
    {Kg              
           d Z ddlZddlmZ ddlmZ ddlmZm	Z	m
Z
  e
dd	g e	eddd
      g e	eddd
      dgdd      ddd       Z	 	 ddZy)zGraph utilities and algorithms.    N)sparse   )pairwise_distances   )IntegralIntervalvalidate_paramsz
array-likezsparse matrixleft)closed)graphsourcecutoffT)prefer_skip_nested_validation)r   c                (   t        j                  |       r| j                         } nt        j                  |       } i }d}|g}|rM|}t	               }|D ]*  }||vs|||<   |j                  | j                  |          , |||k  r	 |S |dz  }|rM|S )aD  Return the length of the shortest path from source to all reachable nodes.

    Parameters
    ----------
    graph : {array-like, sparse matrix} of shape (n_nodes, n_nodes)
        Adjacency matrix of the graph. Sparse matrix of format LIL is
        preferred.

    source : int
       Start node for path.

    cutoff : int, default=None
        Depth to stop the search - only paths of length <= cutoff are returned.

    Returns
    -------
    paths : dict
        Reachable end nodes mapped to length of path from source,
        i.e. `{end: path_length}`.

    Examples
    --------
    >>> from sklearn.utils.graph import single_source_shortest_path_length
    >>> import numpy as np
    >>> graph = np.array([[ 0, 1, 0, 0],
    ...                   [ 1, 0, 1, 0],
    ...                   [ 0, 1, 0, 0],
    ...                   [ 0, 0, 0, 0]])
    >>> single_source_shortest_path_length(graph, 0)
    {0: 0, 1: 1, 2: 2}
    >>> graph = np.ones((6, 6))
    >>> sorted(single_source_shortest_path_length(graph, 2).items())
    [(0, 1), (1, 1), (2, 0), (3, 1), (4, 1), (5, 1)]
    r   r   )r   issparsetolil
lil_matrixsetupdaterows)r   r   r   seenlevel
next_level
this_levelvs           W/home/alanp/www/video.onchill/myenv/lib/python3.12/site-packages/sklearn/utils/graph.py"single_source_shortest_path_lengthr      s    V u!!%(DEJ

U
A}Q!!%**Q-0  &E/K 	
  K    c                 x   |dk(  r t        j                  |       rt        d      t        |      D ]  }t	        j
                  ||k(        }| |   }	t        |      D ]  }
t	        j
                  ||
k(        }| |   }|dk(  r| t	        j                  ||         }nt        |	|fd|i|}t	        j                  |j                  d      |j                        \  }}|dk(  rd|||   ||   f<   d|||   ||   f<   |dk(  r%|||f   |||   ||   f<   |||f   |||   ||   f<   t        d	|z          |S )
a  Add connections to sparse graph to connect unconnected components.

    For each pair of unconnected components, compute all pairwise distances
    from one component to the other, and add a connection on the closest pair
    of samples. This is a hacky way to get a graph with a single connected
    component, which is necessary for example to compute a shortest path
    between all pairs of samples in the graph.

    Parameters
    ----------
    X : array of shape (n_samples, n_features) or (n_samples, n_samples)
        Features to compute the pairwise distances. If `metric =
        "precomputed"`, X is the matrix of pairwise distances.

    graph : sparse matrix of shape (n_samples, n_samples)
        Graph of connection between samples.

    n_connected_components : int
        Number of connected components, as computed by
        `scipy.sparse.csgraph.connected_components`.

    component_labels : array of shape (n_samples)
        Labels of connected components, as computed by
        `scipy.sparse.csgraph.connected_components`.

    mode : {'connectivity', 'distance'}, default='distance'
        Type of graph matrix: 'connectivity' corresponds to the connectivity
        matrix with ones and zeros, and 'distance' corresponds to the distances
        between neighbors according to the given metric.

    metric : str
        Metric used in `sklearn.metrics.pairwise.pairwise_distances`.

    kwargs : kwargs
        Keyword arguments passed to
        `sklearn.metrics.pairwise.pairwise_distances`.

    Returns
    -------
    graph : sparse matrix of shape (n_samples, n_samples)
        Graph of connection between samples, with a single connected component.
    precomputedz_fix_connected_components with metric='precomputed' requires the full distance matrix in X, and does not work with a sparse neighbors graph.metricN)axisconnectivityr   distancez?Unknown mode=%r, should be one of ['connectivity', 'distance'].)r   r   RuntimeErrorrangenpflatnonzeroix_r   unravel_indexargminshape
ValueError)Xr   n_connected_componentscomponent_labelsmoder!   kwargsiidx_iXijidx_jXjDiijjs                   r   _fix_connected_componentsr<   Q   sw   f 6??1#5
 	
 )*/145uXqANN#3q#89E5B&bffUE*+&r2GfGG%%ahhDh&9177CFB~%./eBir*+./eBir*+#./BieBir*+./BieBir*+ U #  +2 Lr   )r$   	euclidean)__doc__numpyr'   scipyr   metrics.pairwiser   _param_validationr   r   r	   r   r<    r   r   <module>rD      s~    %   1 B B 0Haf=>Haf=tD
 #' AE 44x 
Sr   