
    {Kgȥ                     \   d dl Z d dlmZmZ d dlmZmZ d dlZd dl	m
Z ddlmZmZmZ ddlmZmZ ddlmZ ddlmZmZmZmZ dd	lmZmZ dd
lmZ ddlm Z  ddl!m"Z"m#Z# ddl$m%Z%m&Z&m'Z'm(Z(m)Z) ddl*m+Z, ddl*m-Z. ddl*m/Z0 g dZ1d Z2 G d dee      Z3 G d dee3e      Z4d Z5	 	 	 	 	 ddZ6y)    N)ABCMetaabstractmethod)IntegralReal   )BaseEstimatorClassifierMixin_fit_context)ConvergenceWarningNotFittedError)LabelEncoder)check_arraycheck_random_statecolumn_or_1dcompute_class_weight)Interval
StrOptions)safe_sparse_dot)available_if)_ovr_decision_functioncheck_classification_targets)_check_large_sparse_check_sample_weight_num_samplescheck_consistent_lengthcheck_is_fitted   )
_liblinear)_libsvm)_libsvm_sparse)c_svcnu_svc	one_classepsilon_svrnu_svrc           	         | j                   d   dz   }g }t        j                  t        j                  dg|g            }t	        |      D ]  }|||   ||dz      ddf   }t	        |dz   |      D ]e  }|||   ||dz      ddf   }	| |dz
  ||   ||dz      f   }
| |||   ||dz      f   }|j                  t        |
|      t        ||	      z          g  |S )zGenerate primal coefficients from dual coefficients
    for the one-vs-one multi class LibSVM in the case
    of a linear kernel.r   r   N)shapenpcumsumhstackrangeappendr   )	dual_coef	n_supportsupport_vectorsn_classcoefsv_locsclass1sv1class2sv2alpha1alpha2s               U/home/alanp/www/video.onchill/myenv/lib/python3.12/site-packages/sklearn/svm/_base.py_one_vs_one_coefr:   !   s    ooa 1$G Dii		A3	"234G.gfo
0CCQFGFQJ0F!'&/GFQJ4G"G"JKC vz76?WVaZ=P+PPQFvwv!9L'LLMF KK4vs7SST 1 ! K    c                      e Zd ZU dZ eh d      eg eeddd      g eddh       eed	dd      g eeddd
      g eed	dd
      g eed	dd      g eed	dd      g eed	dd      gdgdg eeddd
      g edh      e	dgdg eeddd      gdgdZ
e	ed<   g dZed        Zd Z ed      d)d       Zd Zd Zd Zd Zd Zd Zd  Zd! Zd" Zd# Zd$ Zd% Zed&        Zd' Z ed(        Z!y)*
BaseLibSVMzBase class for estimators that use libsvm as backing library.

    This implements support vector machine classification and regression.

    Parameter documentation is in the derived `SVC` class.
    >   rbfpolylinearsigmoidprecomputedr   Nleft)closedscaleauto        neitherright      ?booleanbalancedverboserandom_statekerneldegreegammacoef0tolCnuepsilon	shrinkingprobability
cache_sizeclass_weightrM   max_iterrO   _parameter_constraints)r@   r?   r>   rA   rB   c                 :   | j                   t        vr t        dt        d| j                   d      || _        || _        || _        || _        || _        || _        || _	        || _
        |	| _        |
| _        || _        || _        || _        || _        || _        y )Nzimpl should be one of z, z
 was given)_implLIBSVM_IMPL
ValueErrorrQ   rR   rS   rT   rU   rV   rW   rX   rY   rZ   r[   r\   rM   r]   rO   )selfrQ   rR   rS   rT   rU   rV   rW   rX   rY   rZ   r[   r\   rM   r]   rO   s                   r9   __init__zBaseLibSVM.__init__f   s    & ::[(<GT  

"&$( (r;   c                 $    d| j                   dk(  iS )NpairwiserB   )rQ   rc   s    r9   
_more_tagszBaseLibSVM._more_tags   s    DKK=899r;   T)prefer_skip_nested_validationc                 	   t        | j                        }t        j                  |      }|r| j                  dk(  rt        d      |xr t        | j                         | _        t        | j                        rt        ||       n(| j                  ||t        j                  ddd      \  }}| j                  |      }t        j                  |g n|t        j                        }t        j                  | j                         }t#        |      }|dk7  r4||j$                  d	   k7  r"t'        d
d|d|j$                  d	   dz         | j                  dk(  rG||j$                  d   k7  r5t'        dj)                  |j$                  d	   |j$                  d               |j$                  d	   d	kD  r8|j$                  d	   |k7  r&t'        d|j$                  d|j$                  d      t        | j                        rdn| j                  }|dk(  rd| _        nt-        | j.                  t0              r| j.                  dk(  rg|r3|j3                  |      j5                         |j5                         dz  z
  n|j7                         }	|	d	k7  rd|j$                  d   |	z  z  nd| _        nR| j.                  dk(  rCd|j$                  d   z  | _        n+t-        | j.                  t8              r| j.                  | _        | j                  r| j:                  n| j<                  }
| j>                  rtA        dd       |jC                  t        jD                  d      jF                        } |
||||||       tI        |d      r|j$                  n|f| _%        | jL                  jO                         | _(        | jR                  | _*        | j                   dv r?tW        | jX                        dk(  r'| xjL                  dz  c_&        | jR                   | _)        | j                  r| jT                  jZ                  n| jT                  }t        j\                  | jP                        j_                         }t        j\                  |      j_                         }|r|st'        d      | j                   dv r| j`                  | _1        | S | j`                  je                         | _1        | S ) a  Fit the SVM model according to the given training data.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)                 or (n_samples, n_samples)
            Training vectors, where `n_samples` is the number of samples
            and `n_features` is the number of features.
            For kernel="precomputed", the expected shape of X is
            (n_samples, n_samples).

        y : array-like of shape (n_samples,)
            Target values (class labels in classification, real numbers in
            regression).

        sample_weight : array-like of shape (n_samples,), default=None
            Per-sample weights. Rescale C per sample. Higher weights
            force the classifier to put more emphasis on these points.

        Returns
        -------
        self : object
            Fitted estimator.

        Notes
        -----
        If X and y are not C-ordered and contiguous arrays of np.float64 and
        X is not a scipy.sparse.csr_matrix, X and/or y may be copied.

        If X is a dense array, then the other methods will not support sparse
        matrices as input.
        rB   z-Sparse precomputed kernels are not supported.rV   csrF)dtypeorderaccept_sparseaccept_large_sparserl   r   r   z"X and y have incompatible shapes.
zX has z samples, but y has .r   zDPrecomputed matrix must be a square matrix. Input is a {}x{} matrix.z.sample_weight and X have incompatible shapes: z vs zT
Note: Sparse matrices cannot be indexed w/boolean masks (use `indices=True` in CV).rG   rE   rJ   rF   z[LibSVM] endi)random_seedr'   r!   r"   rN   zxThe dual coefficients or intercepts are not finite. The input data may contain large values and need to be preprocessed.)3r   rO   spissparserQ   	TypeErrorcallable_sparser   _validate_datar(   float64_validate_targetsasarrayra   indexr`   r   r'   rb   format_gamma
isinstancerS   strmultiplymeanvarr   _sparse_fit
_dense_fitrM   printrandintiinfomaxhasattr
shape_fit_
intercept_copy_intercept_
dual_coef__dual_coef_lenclasses_dataisfiniteall	_num_itern_iter_item)rc   Xysample_weightrndsparsesolver_type	n_samplesrQ   X_varfitseedr-   intercept_finitenessdual_coef_finitenesss                  r9   r   zBaseLibSVM.fit   s   D !!2!23Qdkk]2KLL;ht{{&;";DKK #Aq)&&jj#$) ' DAq ""1%

'B]"**
 "''

3 !O	!	QWWQZ 757@!''!*MN 
 ;;-'I,C,,2F1771:qwwqz,J 
 q!A%-*=*=a*@I*M
 !&&	1  #+4;;"7T[[]" DK

C(zzW$DJA,,.!&&(q@PQPUPUPW<AQJcQWWQZ%%78Cv%!AGGAJ.

D)**DK"&,,dDOO<<*"%{{288C=,,-Aq-f$G &-Q%8!''yl
  ??//1??::,,T]]1Cq1HOOr!O#.DO-1\\D$$))t?O?O	!{{4+;+;<@@B!{{9599;$)=!  ::,,>>DL   >>..0DLr;   c                 Z    t        |d      j                  t        j                  d      S )zxValidation of y and class_weight.

        Default implementation for SVR and one-class; overridden in BaseSVC.
        TwarnF)r   )r   astyper(   r~   )rc   r   s     r9   r   zBaseLibSVM._validate_targets  s%    
 AD)00%0HHr;   c                     | j                   dv sJ | j                   dk(  r(t        j                  d| j                  z  t               y y )Nr   r   r   znSolver terminated early (max_iter=%i).  Consider pre-processing your data with StandardScaler or MinMaxScaler.)fit_status_warningsr   r]   r   rg   s    r9   _warn_from_fit_statusz BaseLibSVM._warn_from_fit_status&  sL    6)))q MM359]]C #	 !r;   c                     t        | j                        rB|| _        | j                  |      }|j                  d   |j                  d   k7  rt        d      t        j                  | j                         t        j                  ||fi d|d|dt        | dt        j                  d            d|d	| j                  d
| j                  d| j                  d| j                   d| j"                  d| j$                  d| j&                  d| j(                  d| j*                  d| j,                  d| j.                  d|\	  | _        | _        | _        | _        | _        | _        | _        | _        | _         | jC                          y )Nr   r   z(X.shape[0] should be equal to X.shape[1]svm_typer   r\   class_weight_rQ   rV   rW   rZ   rR   rY   rU   r[   rT   rS   rX   r]   rv   )"r{   rQ   _BaseLibSVM__Xfit_compute_kernelr'   rb   libsvmset_verbosity_wraprM   r   getattrr(   emptyrV   rW   rZ   rR   rY   rU   r[   rT   r   rX   r]   support_support_vectors_
_n_supportr   r   _probA_probBr   r   r   )rc   r   r   r   r   rQ   rv   s          r9   r   zBaseLibSVM._dense_fit0  s   DKK  DK$$Q'AwwqzQWWQZ' !KLL!!$,,/ JJ
 !
 (	

 !D
 
 ff
 ww
 ((
 ;;
 nn
 
 
 **
 ++
  LL!
" ]]#
$ $%

	
M!OOOKKN, 	""$r;   c                    t        j                  |j                  t         j                  d      |_        |j	                          | j
                  j                  |      }t        j                  | j                         t        j                  |j                  d   |j                  |j                  |j                  |||| j                  | j                  | j                   | j"                  | j$                  t'        | dt        j(                  d            || j*                  | j,                  | j.                  t1        | j2                        t1        | j4                        | j6                  |      \	  | _        | _        }| _        | _        | _         | _!        | _"        | _#        | jI                          tK        | d      rtM        | jN                        dz
  }	nd}	| j:                  j                  d   }
t        jP                  t        jR                  |
      |	      }|
stU        jV                  g       | _,        y t        jR                  d|jZ                  dz   |jZ                  |	z        }tU        jV                  |||f|	|
f      | _,        y )NrV   rl   rm   r   r   r   r   ).r(   r   r   r~   sort_indices_sparse_kernelsr   libsvm_sparser   rM   libsvm_sparse_trainr'   indicesindptrrR   r   rT   rU   rV   r   r   rW   r[   rX   intrY   rZ   r]   r   r   r   r   r   r   r   r   r   r   r   r   tilearangerx   
csr_matrixr   size)rc   r   r   r   r   rQ   rv   kernel_typedual_coef_datar0   n_SVdual_coef_indicesdual_coef_indptrs                r9   r   zBaseLibSVM._sparse_fit_  s   AFF"**C@	**008((6 --GGAJFFIIHHKKKKJJHHFFD/288A;7GGOOLL  !MM+

	
M!OOKKN2 	""$4$$--(1,GG$$**1-GGBIIdOW= mmB/DO!yy$))A-/@/E/E/O  !mm!24DEQUDOr;   c                 |    | j                  |      }| j                  r| j                  n| j                  } ||      S )a  Perform regression on samples in X.

        For an one-class model, +1 (inlier) or -1 (outlier) is returned.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            For kernel="precomputed", the expected shape of X is
            (n_samples_test, n_samples_train).

        Returns
        -------
        y_pred : ndarray of shape (n_samples,)
            The predicted values.
        )_validate_for_predictr|   _sparse_predict_dense_predict)rc   r   predicts      r9   r   zBaseLibSVM.predict  s7      &&q)*.,,$&&D<O<Oqzr;   c                    | j                  |      }|j                  dk(  rt        |dd      }| j                  }t	        | j                        rKd}|j
                  d   | j                  d   k7  r*t        d|j
                  d   | j                  d   fz        t        j                  | j                        }t        j                  || j                  | j                  | j                  | j                   | j"                  | j$                  | j&                  ||| j(                  | j*                  | j,                  | j.                        S )	Nr   rV   F)rm   ro   rB   r   MX.shape[1] = %d should be equal to %d, the number of samples at training time)r   rQ   rR   rT   rS   r[   )r   ndimr   rQ   r{   r'   r   rb   ra   r   r`   r   r   r   r   r   r   r   r   r   rR   rT   r   r[   )rc   r   rQ   r   s       r9   r   zBaseLibSVM._dense_predict  s     #66Q;ASeDADKK "FwwqzT__Q// =wwqz4??1#567  $$TZZ0~~MM!!OOKKKK;;**++
 	
r;   c                    | j                   }t        |      rd}| j                  j                  |      }d}t	        j
                  |j                  |j                  |j                  | j                  j                  | j                  j                  | j                  j                  | j                  j                  | j                  t        j                  | j                        || j                  | j                  | j                   | j"                  |t%        | dt'        j(                  d            | j*                  | j,                  | j.                  | j0                  | j2                  | j4                  | j6                        S )NrB   rG   r   r   )rQ   r{   r   r   r   libsvm_sparse_predictr   r   r   r   r   r   ra   r`   rR   r   rT   rU   r   r(   r   rW   rX   rY   rZ   r   r   r   )rc   r   rQ   r   rV   s        r9   r   zBaseLibSVM._sparse_predict  s   F"F**00822FFIIHH!!&&!!))!!((!!djj)KKKKJJHHD/288A;7GGLLNNOOKKKK/
 	
r;   c                     t        | j                        rg| j                  || j                        }t        j                  |      r|j                         }t        j                  |t        j                  d      }|S )z0Return the data transformed by a callable kernelrV   r   )	r{   rQ   r   rx   ry   toarrayr(   r   r~   rc   r   rQ   s      r9   r   zBaseLibSVM._compute_kernel  sW    DKK  [[DKK0F{{6")

63?Ar;   c                    | j                  |      }| j                  |      }| j                  r| j                  |      }n| j	                  |      }| j
                  dv r)t        | j                        dk(  r|j                          S |S )af  Evaluates the decision function for the samples in X.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)

        Returns
        -------
        X : array-like of shape (n_samples, n_class * (n_class-1) / 2)
            Returns the decision function of the sample for each class
            in the model.
        rw   r   )	r   r   r|   _sparse_decision_function_dense_decision_functionr`   r   r   ravel)rc   r   dec_funcs      r9   _decision_functionzBaseLibSVM._decision_function  s     &&q)  #<<55a8H44Q7H ::,,T]]1Cq1HNN$$$r;   c                    t        |t        j                  dd      }| j                  }t	        |      rd}t        j                  || j                  | j                  | j                  | j                  | j                  | j                  | j                  t        j                  | j                         || j"                  | j$                  | j&                  | j(                        S )NrV   F)rl   rm   ro   rB   r   rQ   rR   r[   rT   rS   )r   r(   r~   rQ   r{   r   decision_functionr   r   r   r   r   r   r   ra   r   r`   rR   r[   rT   r   r   s      r9   r   z#BaseLibSVM._dense_decision_function  s    3ERF"F''MM!!OOKKKK &&tzz2;;**++
 	
r;   c                    t        j                  |j                  t         j                  d      |_        | j                  }t        |d      rd}| j                  j                  |      }t        j                  |j                  |j                  |j                  | j                  j                  | j                  j                  | j                  j                  | j                  j                  | j                  t        j                  | j                         || j"                  | j$                  | j&                  | j(                  | j*                  t-        | dt        j.                  d            | j0                  | j2                  | j4                  | j6                  | j8                  | j:                  | j<                        S )NrV   r   __call__rB   r   r   )r(   r   r   r~   rQ   r   r   r   r   libsvm_sparse_decision_functionr   r   r   r   r   ra   r`   rR   r   rT   rU   rV   r   r   rW   rX   rY   rZ   r   r   r   rc   r   rQ   r   s       r9   r   z$BaseLibSVM._sparse_decision_function7  s8   AFF"**C@6:&"F**008<<FFIIHH!!&&!!))!!((!!djj)KKKKJJHHFFD/288A;7GGLLNNOOKKKK/
 	
r;   c                 z   t        |        t        | j                        s%| j                  |dt        j
                  ddd      }| j                  r*t        j                  |      st        j                  |      }| j                  r|j                          t        j                  |      rB| j                  s6t        | j                        s!t        dt        |       j                  z        | j                  dk(  rI|j                  d   | j                  d   k7  r*t        d	|j                  d   | j                  d   fz        | j                   }| j                  s\|j"                  dkD  rM| j$                  j'                         |j                  d   k7  r#t        d
| j(                  j                   d      |S )Nrk   rV   F)rn   rl   rm   ro   resetz3cannot use sparse input in %r trained on dense datarB   r   r   r   zThe internal representation of z was altered)r   r{   rQ   r}   r(   r~   r|   rx   ry   r   r   rb   type__name__r'   r   r   r   
n_support_sum	__class__)rc   r   svs      r9   r   z BaseLibSVM._validate_for_predictZ  sn   $###jj$) $ A <<Aa A<<NN;;q>$,,x7LEt*%%& 
 ;;-'wwqzT__Q// =wwqz4??1#567  ""||!0C0C0ERS0T1$..2I2I1J,W  r;   c                     | j                   dk7  rt        d      | j                         }t        j                  |      rd|j
                  j                  _        |S d|j                  _        |S )zWeights assigned to the features when `kernel="linear"`.

        Returns
        -------
        ndarray of shape (n_features, n_classes)
        r@   z2coef_ is only available when using a linear kernelF)rQ   AttributeError	_get_coefrx   ry   r   flags	writeablerc   r1   s     r9   coef_zBaseLibSVM.coef_  s`     ;;(" !UVV~~ ;;t(-DIIOO%  $)DJJ r;   c                 B    t        | j                  | j                        S N)r   r   r   rg   s    r9   r   zBaseLibSVM._get_coef  s    t//1F1FGGr;   c                     	 t        |        t        j	                  | j
                        }|dv r| j                  S t        j                  | j                  d   g      S # t        $ r t        w xY w)z)Number of support vectors for each class.r   r   )	r   r   r   ra   r   r`   r   r(   array)rc   r   s     r9   r   zBaseLibSVM.n_support_  sk    	!D! $$TZZ0v??" 88T__Q/011  	!  	!s   A A/r   )"r   
__module____qualname____doc__r   r{   r   r   r   dictr^   __annotations__r   r   rd   rh   r
   r   r   r   r   r   r   r   r   r   r   r   r   r   propertyr   r   r    r;   r9   r=   r=   A   s    JK
 Haf=>()T3V4
 4tI>?sD;<tS$w78c3w78T3V<=[!{ai@A#ZL14>;hD@A'(+$D 6 JO%) %)N: 5J 6JXI-%^;z( 
D"
H	<
0!
F&P  ,H 2 2r;   r=   )	metaclassc                   (    e Zd ZU dZi ej
                   eddh      gdgdZeed<   dD ]  Z	ej                  e	        e fd       Zd	 Zd
 Z fdZd Z ee      d        Z ee      d        Zd Zd Zd Zed        Zed        Z xZS )BaseSVCz!ABC for LibSVM-based classifiers.ovrovorK   )decision_function_shape
break_tiesr^   )rX   rW   c                 ^    || _         || _        t        |   |||||||d||	|
||||       y )NrG   rP   )r  r  superrd   )rc   rQ   rR   rS   rT   rU   rV   rW   rY   rZ   r[   r\   rM   r]   r  rO   r  r   s                    r9   rd   zBaseSVC.__init__  sS    ( (?$$#!%% 	 	
r;   c                 D   t        |d      }t        |       t        j                  |d      \  }}t	        | j
                  ||      | _        t        |      dk  rt        dt        |      z        || _	        t        j                  |t        j                  d      S )	NTr   )return_inverseclassesr   r   z>The number of classes has to be greater than one; got %d classrV   r   )r   r   r(   uniquer   r\   r   r   rb   r   r   r~   )rc   r   y_clss       r9   r   zBaseSVC._validate_targets  s    !$'$Q'2d3Q1$2C2CSTVWs8a<Pc( 
 zz!2::S99r;   c                     | j                  |      }| j                  dk(  r<t        | j                        dkD  r$t	        |dk  | t        | j                              S |S )a4  Evaluate the decision function for the samples in X.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            The input samples.

        Returns
        -------
        X : ndarray of shape (n_samples, n_classes * (n_classes-1) / 2)
            Returns the decision function of the sample for each class
            in the model.
            If decision_function_shape='ovr', the shape is (n_samples,
            n_classes).

        Notes
        -----
        If decision_function_shape='ovo', the function values are proportional
        to the distance of the samples X to the separating hyperplane. If the
        exact distances are required, divide the function values by the norm of
        the weight vector (``coef_``). See also `this question
        <https://stats.stackexchange.com/questions/14876/
        interpreting-distance-from-hyperplane-in-svm>`_ for further details.
        If decision_function_shape='ovr', the decision function is a monotonic
        transformation of ovo decision function.
        r
  r   r   )r   r  r   r   r   )rc   r   decs      r9   r   zBaseSVC.decision_function  sU    6 %%a(''50S5G!5K)#'C4T]]9KLL
r;   c                    t        |        | j                  r| j                  dk(  rt        d      | j                  rN| j                  dk(  r?t	        | j
                        dkD  r't        j                  | j                  |      d      }nt        | )  |      }| j
                  j                  t        j                  |t        j                              S )a  Perform classification on samples in X.

        For an one-class model, +1 or -1 is returned.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features) or                 (n_samples_test, n_samples_train)
            For kernel="precomputed", the expected shape of X is
            (n_samples_test, n_samples_train).

        Returns
        -------
        y_pred : ndarray of shape (n_samples,)
            Class labels for samples in X.
        r  z>break_ties must be False when decision_function_shape is 'ovo'r
  r   r   )axisrp   )r   r  r  rb   r   r   r(   argmaxr   r  r   taker   intp)rc   r   r   r   s      r9   r   zBaseSVC.predict  s    " 	??t;;uDP 
 OO,,5DMM"Q&		$003!<A"A}}!!"**Qbgg">??r;   c                 d    | j                   st        d      | j                  dvrt        d      y)Nz5predict_proba is not available when probability=Falserw   z0predict_proba only implemented for SVC and NuSVCT)rZ   r   r`   rg   s    r9   _check_probazBaseSVC._check_proba4  s9     G  ::00 !STTr;   c                     | j                  |      }| j                  j                  dk(  s| j                  j                  dk(  rt	        d      | j
                  r| j                  n| j                  } ||      S )a  Compute probabilities of possible outcomes for samples in X.

        The model needs to have probability information computed at training
        time: fit with attribute `probability` set to True.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            For kernel="precomputed", the expected shape of X is
            (n_samples_test, n_samples_train).

        Returns
        -------
        T : ndarray of shape (n_samples, n_classes)
            Returns the probability of the sample for each class in
            the model. The columns correspond to the classes in sorted
            order, as they appear in the attribute :term:`classes_`.

        Notes
        -----
        The probability model is created using cross validation, so
        the results can be slightly different than those obtained by
        predict. Also, it will produce meaningless results on very small
        datasets.
        r   zApredict_proba is not available when fitted with probability=False)r   probA_r   probB_r   r|   _sparse_predict_proba_dense_predict_proba)rc   r   
pred_probas      r9   predict_probazBaseSVC.predict_proba=  sq    6 &&q);;q DKK$4$4$9 S  +/,,D&&D<U<U 	 !}r;   c                 J    t        j                  | j                  |            S )a  Compute log probabilities of possible outcomes for samples in X.

        The model need to have probability information computed at training
        time: fit with attribute `probability` set to True.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features) or                 (n_samples_test, n_samples_train)
            For kernel="precomputed", the expected shape of X is
            (n_samples_test, n_samples_train).

        Returns
        -------
        T : ndarray of shape (n_samples, n_classes)
            Returns the log-probabilities of the sample for each class in
            the model. The columns correspond to the classes in sorted
            order, as they appear in the attribute :term:`classes_`.

        Notes
        -----
        The probability model is created using cross validation, so
        the results can be slightly different than those obtained by
        predict. Also, it will produce meaningless results on very small
        datasets.
        )r(   logr&  )rc   r   s     r9   predict_log_probazBaseSVC.predict_log_probab  s    8 vvd((+,,r;   c                    | j                  |      }| j                  }t        |      rd}t        j	                  | j
                        }t        j                  || j                  | j                  | j                  | j                  | j                  | j                  | j                  ||| j                  | j                   | j"                  | j$                        }|S )NrB   r   )r   rQ   r{   ra   r   r`   r   r&  r   r   r   r   r   r   r   rR   r[   rT   r   )rc   r   rQ   r   pprobs        r9   r$  zBaseSVC._dense_predict_proba  s      #F"F$$TZZ0$$MM!!OOKKKK;;**++
" r;   c                    t        j                  |j                  t         j                  d      |_        | j                  }t        |      rd}| j                  j                  |      }t        j                  |j                  |j                  |j                  | j                  j                  | j                  j                  | j                  j                  | j                  j                  | j                  t        j                  | j                         || j"                  | j$                  | j&                  | j(                  | j*                  t-        | dt        j.                  d            | j0                  | j2                  | j4                  | j6                  | j8                  | j:                  | j<                        S )NrV   r   rB   r   r   )r(   r   r   r~   rQ   r{   r   r   r   libsvm_sparse_predict_probar   r   r   r   r   ra   r`   rR   r   rT   rU   rV   r   r   rW   rX   rY   rZ   r   r   r   r   s       r9   r#  zBaseSVC._sparse_predict_proba  s6   AFF"**C@F"F**00888FFIIHH!!&&!!))!!((!!djj)KKKKJJHHFFD/288A;7GGLLNNOOKKKK/
 	
r;   c                 |   | j                   j                  d   dk(  r"t        | j                   | j                        }|S t	        | j                   | j
                  | j                        }t        j                  |d         r%t        j                  |      j                         }|S t        j                  |      }|S )Nr   r   )r   r'   r   r   r:   r   rx   ry   vstacktocsrr(   r   s     r9   r   zBaseSVC._get_coef  s    ??  #q("4??D4I4IJD  $$2G2GD {{47#yy,,.  yyr;   c                     | j                   S zParameter learned in Platt scaling when `probability=True`.

        Returns
        -------
        ndarray of shape  (n_classes * (n_classes - 1) / 2)
        )r   rg   s    r9   r!  zBaseSVC.probA_       {{r;   c                     | j                   S r2  )r   rg   s    r9   r"  zBaseSVC.probB_  r3  r;   )r   r   r  r  r=   r^   r   r  r  unused_parampopr   rd   r   r   r   r  r   r&  r)  r$  r#  r   r  r!  r"  __classcell__)r   s   @r9   r	  r	    s    +$

+
+$$.u~$>#? k$D 
 *""<0 * %
 %
N:@@J ,"  "H ,-  -:6!
F     r;   r	  c           
      j   ddiddddddd	iidd
idddddddiiddddidd}| dk(  r||    S | dk7  rt        d| z        |j                  |d      }|d|z  }n@|j                  |d      }|
d|d|d}n"|j                  |d      }|d|d|d|}n|S t        d|d|d|d|      )a  Find the liblinear magic number for the solver.

    This number depends on the values of the following attributes:
      - multi_class
      - penalty
      - loss
      - dual

    The same number is also internally used by LibLinear to determine
    which solver to use.
    F   r      )FT)l1l2r<  T      r   r               )logistic_regressionhingesquared_hingeepsilon_insensitivesquared_epsilon_insensitivecrammer_singerrH  r
  z<`multi_class` must be one of `ovr`, `crammer_singer`, got %rNzloss='%s' is not supportedzThe combination of penalty='z' and loss='z' is not supportedz' are not supported when dual=zUnsupported set of arguments: z, Parameters: penalty=z, loss=z, dual=)rb   get)	multi_classpenaltylossdual_solver_type_dict_solver_penerror_string_solver_dual
solver_nums	            r9   _get_liblinear_solver_typerS    s(   " (-aj8KLq	"!&
!12EF $tRj1(,b.C'D && --		J[X
 	
 $''d3K3d:"w5 D" 
 &))$5J! CJ4QUW 
 "!
$	. r;   c                    |dvrUt               }|j                  |      }|j                  }t        |      dk  rt	        d|d   z        t        |||      }n't        j                  dt        j                        }|}t        j                  |       t        |      }|rt        dd	       d
}|r|dk  rt	        d|z        |}t        j                  |       t        j                  |       t        j                  |       t        j                   |       rt#        |        t        j$                  |t        j                        j'                         }t        j(                  |d      }t+        || t        j                        }t-        ||||      }t        j.                  | |t        j                   |       ||
||||	|j1                  t        j2                  d      j4                        ||      \  }}t5        |      }||	k\  rt7        j8                  dt:               |r|ddddf   }||dddf   z  }n|}d}|||fS )a  Used by Logistic Regression (and CV) and LinearSVC/LinearSVR.

    Preprocessing is done in this function before supplying it to liblinear.

    Parameters
    ----------
    X : {array-like, sparse matrix} of shape (n_samples, n_features)
        Training vector, where `n_samples` is the number of samples and
        `n_features` is the number of features.

    y : array-like of shape (n_samples,)
        Target vector relative to X

    C : float
        Inverse of cross-validation parameter. The lower the C, the higher
        the penalization.

    fit_intercept : bool
        Whether or not to fit an intercept. If set to True, the feature vector
        is extended to include an intercept term: ``[x_1, ..., x_n, 1]``, where
        1 corresponds to the intercept. If set to False, no intercept will be
        used in calculations (i.e. data is expected to be already centered).

    intercept_scaling : float
        Liblinear internally penalizes the intercept, treating it like any
        other term in the feature vector. To reduce the impact of the
        regularization on the intercept, the `intercept_scaling` parameter can
        be set to a value greater than 1; the higher the value of
        `intercept_scaling`, the lower the impact of regularization on it.
        Then, the weights become `[w_x_1, ..., w_x_n,
        w_intercept*intercept_scaling]`, where `w_x_1, ..., w_x_n` represent
        the feature weights and the intercept weight is scaled by
        `intercept_scaling`. This scaling allows the intercept term to have a
        different regularization behavior compared to the other features.

    class_weight : dict or 'balanced', default=None
        Weights associated with classes in the form ``{class_label: weight}``.
        If not given, all classes are supposed to have weight one. For
        multi-output problems, a list of dicts can be provided in the same
        order as the columns of y.

        The "balanced" mode uses the values of y to automatically adjust
        weights inversely proportional to class frequencies in the input data
        as ``n_samples / (n_classes * np.bincount(y))``

    penalty : {'l1', 'l2'}
        The norm of the penalty used in regularization.

    dual : bool
        Dual or primal formulation,

    verbose : int
        Set verbose to any positive number for verbosity.

    max_iter : int
        Number of iterations.

    tol : float
        Stopping condition.

    random_state : int, RandomState instance or None, default=None
        Controls the pseudo random number generation for shuffling the data.
        Pass an int for reproducible output across multiple function calls.
        See :term:`Glossary <random_state>`.

    multi_class : {'ovr', 'crammer_singer'}, default='ovr'
        `ovr` trains n_classes one-vs-rest classifiers, while `crammer_singer`
        optimizes a joint objective over all classes.
        While `crammer_singer` is interesting from an theoretical perspective
        as it is consistent it is seldom used in practice and rarely leads to
        better accuracy and is more expensive to compute.
        If `crammer_singer` is chosen, the options loss, penalty and dual will
        be ignored.

    loss : {'logistic_regression', 'hinge', 'squared_hinge',             'epsilon_insensitive', 'squared_epsilon_insensitive},             default='logistic_regression'
        The loss function used to fit the model.

    epsilon : float, default=0.1
        Epsilon parameter in the epsilon-insensitive loss function. Note
        that the value of this parameter depends on the scale of the target
        variable y. If unsure, set epsilon=0.

    sample_weight : array-like of shape (n_samples,), default=None
        Weights assigned to each sample.

    Returns
    -------
    coef_ : ndarray of shape (n_features, n_features + 1)
        The coefficient vector got by minimizing the objective function.

    intercept_ : float
        The intercept term added to the vector.

    n_iter_ : array of int
        Number of iterations run across for each class.
    )rF  rG  r   zeThis solver needs samples of at least 2 classes in the data, but the data contains only one class: %rr   r  rp   z[LibLinear]rr   rs   g      zqIntercept scaling is %r but needs to be greater than 0. To disable fitting an intercept, set fit_intercept=False.W)requirementsru   z@Liblinear failed to converge, increase the number of iterations.NrN   rG   )r   fit_transformr   r   rb   r   r(   r   r~   	liblinearr   r   r   r   r   rx   ry   r   r   r   requirer   rS  
train_wrapr   r   r   r   r   r   )r   r   rV   fit_interceptintercept_scalingr\   rK  rM  rM   r]   rU   rO   rJ  rL  rX   r   ency_indr   r   r   biasr   	raw_coef_r   
n_iter_maxr   r   s                               r9   _fit_liblinearrb    s(   h IIn!!!$<<x=1'{+  -\8qQ"**5  )
\
*Cm$ D!,.?@  %D
g&$$W-  ) 
{{1~A JJuBJJ/557EJJu3/E(LM,['4NK"--	
A	BHHSM%%&Iw$ WJXN	

 !SbS&!&1b5)99

*g%%r;   )Nr
  rC  g?N)7r   abcr   r   numbersr   r   numpyr(   scipy.sparser   rx   baser   r	   r
   
exceptionsr   r   preprocessingr   utilsr   r   r   r   utils._param_validationr   r   utils.extmathr   utils.metaestimatorsr   utils.multiclassr   r   utils.validationr   r   r   r   r   rr   r   rX  r   r   r    r   ra   r:   r=   r	  rS  rb  r  r;   r9   <module>rp     s     ' "   ? ? ; ( W W : + / S  &   -G@i	2' i	2XsozW sl	6J 	!C&r;   