
    {KgR                     x   d dl mZ d dlmZmZ d dlZddlmZm	Z	m
Z
mZmZ ddlmZ ddlmZmZ ddlmZ dd	lmZ dd
lmZmZmZmZ ddlmZ ddlmZmZm Z m!Z! ddl"m#Z# ddl$m%Z% ddl&m'Z'm(Z( ddl)m*Z*m+Z+m,Z,m-Z- ddl.m/Z/m0Z0 d Z1d Z2 G d de	e
e      Z3 G d de3      Z4 G d de      Z5d Z6d Z7 G d de3      Z8y)    )MutableMapping)IntegralRealN   )BaseEstimatorClassifierMixinMetaEstimatorMixin_fit_contextclone)NotFittedError)check_scoringget_scorer_names)_BaseScorer)_safe_indexing)
HasMethodsInterval
RealNotInt
StrOptions)_get_response_values_binary)MetadataRouterMethodMapping_raise_for_paramsprocess_routing)available_if)type_of_target)Paralleldelayed)_check_method_params_num_samplescheck_is_fitted	indexable   )StratifiedShuffleSplitcheck_cvc                       fd}|S )zCheck if we can delegate a method to the underlying estimator.

    First, we check the fitted estimator if available, otherwise we
    check the unfitted estimator.
    c                 x    t        | d      rt        | j                         yt        | j                         y)N
estimator_T)hasattrgetattrr'   	estimator)selfattrs    u/home/alanp/www/video.onchill/myenv/lib/python3.12/site-packages/sklearn/model_selection/_classification_threshold.pycheckz_estimator_has.<locals>.check/   s3    4&DOOT*  DNND)     )r,   r.   s   ` r-   _estimator_hasr1   (   s     Lr/   c                    |t        j                  ddg      }nMt        j                  ||k(        d   }t        j                  ||k7        d   }t        j                  ||g      }||| |k\  j                  t                    S )z;Threshold `y_score` and return the associated class labels.r   r"   )nparrayflatnonzeroastypeint)y_score	thresholdclasses	pos_labelmap_thresholded_score_to_labelpos_label_idxneg_label_idxs          r-   !_threshold_scores_to_class_labelsr?   9   s    )+1a&)9&w)';<Q?w)';<Q?)+=-2P)Q&17i3G2O2OPS2TUVVr/   c                       e Zd ZU dZdgZ eddg       eddg      g eh d      gdZee	d<   d	d
dZ
d Z ed      d        Zed        Z e ed            d        Z e ed            d        Z e ed            d        Zd Zy)BaseThresholdClassifiera  Base class for binary classifiers that set a non-default decision threshold.

    In this base class, we define the following interface:

    - the validation of common parameters in `fit`;
    - the different prediction methods that can be used with the classifier.

    .. versionadded:: 1.5

    Parameters
    ----------
    estimator : estimator instance
        The binary classifier, fitted or not, for which we want to optimize
        the decision threshold used during `predict`.

    response_method : {"auto", "decision_function", "predict_proba"}, default="auto"
        Methods by the classifier `estimator` corresponding to the
        decision function for which we want to find a threshold. It can be:

        * if `"auto"`, it will try to invoke, for each classifier,
          `"predict_proba"` or `"decision_function"` in that order.
        * otherwise, one of `"predict_proba"` or `"decision_function"`.
          If the method is not implemented by the classifier, it will raise an
          error.
    r*   fitpredict_probadecision_function>   autorC   rD   r*   response_method_parameter_constraintsrE   rG   c                     || _         || _        y NrF   )r+   r*   rG   s      r-   __init__z BaseThresholdClassifier.__init__i   s    ".r/   c                 H    | j                   dk(  rddg}|S | j                   }|S )zDefine the response method.rE   rC   rD   rI   )r+   rG   s     r-   _get_response_methodz,BaseThresholdClassifier._get_response_methodm   s6    6).0CDO  #22Or/   F)prefer_skip_nested_validationc                 j   t        || d       t        ||      \  }}t        |d      }|dk7  rt        d|        | j                  ||fi | t        | j                  d      r| j                  j                  | _        t        | j                  d      r| j                  j                  | _        | S )  Fit the classifier.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            Training data.

        y : array-like of shape (n_samples,)
            Target values.

        **params : dict
            Parameters to pass to the `fit` method of the underlying
            classifier.

        Returns
        -------
        self : object
            Returns an instance of self.
        Ny)
input_namebinaryz=Only binary classification is supported. Unknown label type: n_features_in_feature_names_in_)	r   r!   r   
ValueError_fitr(   r'   rU   rV   )r+   XrR   paramsy_types        r-   rB   zBaseThresholdClassifier.fitu   s    0 	&$-A1c2XOPVxX  			!Q!&!4??$45"&//"@"@D4??$78%)__%F%FD"r/   c                 .    | j                   j                  S )zClasses labels.)r'   classes_r+   s    r-   r]   z BaseThresholdClassifier.classes_   s     '''r/   c                 P    t        | d       | j                  j                  |      S )a  Predict class probabilities for `X` using the fitted estimator.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            Training vectors, where `n_samples` is the number of samples and
            `n_features` is the number of features.

        Returns
        -------
        probabilities : ndarray of shape (n_samples, n_classes)
            The class probabilities of the input samples.
        r'   )r    r'   rC   r+   rY   s     r-   rC   z%BaseThresholdClassifier.predict_proba   s#     	l+,,Q//r/   predict_log_probac                 P    t        | d       | j                  j                  |      S )a  Predict logarithm class probabilities for `X` using the fitted estimator.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            Training vectors, where `n_samples` is the number of samples and
            `n_features` is the number of features.

        Returns
        -------
        log_probabilities : ndarray of shape (n_samples, n_classes)
            The logarithm class probabilities of the input samples.
        r'   )r    r'   ra   r`   s     r-   ra   z)BaseThresholdClassifier.predict_log_proba   #     	l+0033r/   c                 P    t        | d       | j                  j                  |      S )a  Decision function for samples in `X` using the fitted estimator.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            Training vectors, where `n_samples` is the number of samples and
            `n_features` is the number of features.

        Returns
        -------
        decisions : ndarray of shape (n_samples,)
            The decision function computed the fitted estimator.
        r'   )r    r'   rD   r`   s     r-   rD   z)BaseThresholdClassifier.decision_function   rc   r/   c                     dddddS )NTz*Threshold at probability 0.5 does not holdzDue to the cross-validation and sample ordering, removing a sample is not strictly equal to putting is weight to zero. Specific unit tests are added for TunedThresholdClassifierCV specifically.)check_classifiers_traincheck_sample_weights_invariance)binary_only_xfail_checksr0   r^   s    r-   
_more_tagsz"BaseThresholdClassifier._more_tags   s    +WT

 
	
r/   N)__name__
__module____qualname____doc___required_parametersr   r   rH   dict__annotations__rL   rN   r
   rB   propertyr]   r   r1   rC   ra   rD   rj   r0   r/   r-   rA   rA   E   s    4 (= /0234
 ''UVW$D  6< / &+%	%N ( ( .120 30" .!4564 74" .!4564 74"
r/   rA   c                        e Zd ZU dZi ej
                   edh      egeeddgdZe	e
d<   dddd fd
Zd	 Zd
 Zd Z xZS )FixedThresholdClassifiera  Binary classifier that manually sets the decision threshold.

    This classifier allows to change the default decision threshold used for
    converting posterior probability estimates (i.e. output of `predict_proba`) or
    decision scores (i.e. output of `decision_function`) into a class label.

    Here, the threshold is not optimized and is set to a constant value.

    Read more in the :ref:`User Guide <FixedThresholdClassifier>`.

    .. versionadded:: 1.5

    Parameters
    ----------
    estimator : estimator instance
        The binary classifier, fitted or not, for which we want to optimize
        the decision threshold used during `predict`.

    threshold : {"auto"} or float, default="auto"
        The decision threshold to use when converting posterior probability estimates
        (i.e. output of `predict_proba`) or decision scores (i.e. output of
        `decision_function`) into a class label. When `"auto"`, the threshold is set
        to 0.5 if `predict_proba` is used as `response_method`, otherwise it is set to
        0 (i.e. the default threshold for `decision_function`).

    pos_label : int, float, bool or str, default=None
        The label of the positive class. Used to process the output of the
        `response_method` method. When `pos_label=None`, if `y_true` is in `{-1, 1}` or
        `{0, 1}`, `pos_label` is set to 1, otherwise an error will be raised.

    response_method : {"auto", "decision_function", "predict_proba"}, default="auto"
        Methods by the classifier `estimator` corresponding to the
        decision function for which we want to find a threshold. It can be:

        * if `"auto"`, it will try to invoke `"predict_proba"` or `"decision_function"`
          in that order.
        * otherwise, one of `"predict_proba"` or `"decision_function"`.
          If the method is not implemented by the classifier, it will raise an
          error.

    Attributes
    ----------
    estimator_ : estimator instance
        The fitted classifier used when predicting.

    classes_ : ndarray of shape (n_classes,)
        The class labels.

    n_features_in_ : int
        Number of features seen during :term:`fit`. Only defined if the
        underlying estimator exposes such an attribute when fit.

    feature_names_in_ : ndarray of shape (`n_features_in_`,)
        Names of features seen during :term:`fit`. Only defined if the
        underlying estimator exposes such an attribute when fit.

    See Also
    --------
    sklearn.model_selection.TunedThresholdClassifierCV : Classifier that post-tunes
        the decision threshold based on some metrics and using cross-validation.
    sklearn.calibration.CalibratedClassifierCV : Estimator that calibrates
        probabilities.

    Examples
    --------
    >>> from sklearn.datasets import make_classification
    >>> from sklearn.linear_model import LogisticRegression
    >>> from sklearn.metrics import confusion_matrix
    >>> from sklearn.model_selection import FixedThresholdClassifier, train_test_split
    >>> X, y = make_classification(
    ...     n_samples=1_000, weights=[0.9, 0.1], class_sep=0.8, random_state=42
    ... )
    >>> X_train, X_test, y_train, y_test = train_test_split(
    ...     X, y, stratify=y, random_state=42
    ... )
    >>> classifier = LogisticRegression(random_state=0).fit(X_train, y_train)
    >>> print(confusion_matrix(y_test, classifier.predict(X_test)))
    [[217   7]
     [ 19   7]]
    >>> classifier_other_threshold = FixedThresholdClassifier(
    ...     classifier, threshold=0.1, response_method="predict_proba"
    ... ).fit(X_train, y_train)
    >>> print(confusion_matrix(y_test, classifier_other_threshold.predict(X_test)))
    [[184  40]
     [  6  20]]
    rE   booleanN)r9   r;   rH   )r9   r;   rG   c                D    t         |   ||       || _        || _        y NrF   )superrL   r;   r9   )r+   r*   r9   r;   rG   	__class__s        r-   rL   z!FixedThresholdClassifier.__init__G  s%     	9oN""r/   c                     t        | dfi |} t        | j                        j                  ||fi |j                  j                  | _        | S )rQ   rB   )r   r   r*   rB   r'   )r+   rY   rR   rZ   routed_paramss        r-   rX   zFixedThresholdClassifier._fitS  sJ    ( (e>v>3%/33AqXM<S<S<W<WXr/   c                    t        | d       t        | j                  || j                         | j                  d      \  }}}| j
                  dk(  r
|dk(  rdnd}n| j
                  }t        ||| j                  | j                        S )O  Predict the target of new samples.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            The samples, as accepted by `estimator.predict`.

        Returns
        -------
        class_labels : ndarray of shape (n_samples,)
            The predicted class.
        r'   T)r;   return_response_method_usedrE   rC   g      ?        )r    r   r'   rN   r;   r9   r?   r]   )r+   rY   r8   _response_method_useddecision_thresholds         r-   predictz FixedThresholdClassifier.predictk  s     	l++FOO%%'nn(,,
(( >>V#(<(OUX!%0'
 	
r/   c                     t        | j                  j                        j                  | j                  t               j                  dd            }|S )K  Get metadata routing of this object.

        Please check :ref:`User Guide <metadata_routing>` on how the routing
        mechanism works.

        Returns
        -------
        routing : MetadataRouter
            A :class:`~sklearn.utils.metadata_routing.MetadataRouter` encapsulating
            routing information.
        ownerrB   calleecallerr*   method_mapping)r   ry   rk   addr*   r   r+   routers     r-   get_metadata_routingz-FixedThresholdClassifier.get_metadata_routing  sL      dnn&=&=>BBnn(?..eE.J C 
 r/   )rk   rl   rm   rn   rA   rH   r   r   strrp   rq   rL   rX   r   r   __classcell__ry   s   @r-   rt   rt      sf    Un$
!
8
8$ &*D1CD1$D  
#0
>r/   rt   c                   8     e Zd ZdZ fdZed        Zd Z xZS )_CurveScorera  Scorer taking a continuous response and output a score for each threshold.

    Parameters
    ----------
    score_func : callable
        The score function to use. It will be called as
        `score_func(y_true, y_pred, **kwargs)`.

    sign : int
        Either 1 or -1 to returns the score with `sign * score_func(estimator, X, y)`.
        Thus, `sign` defined if higher scores are better or worse.

    kwargs : dict
        Additional parameters to pass to the score function.

    thresholds : int or array-like
        Related to the number of decision thresholds for which we want to compute the
        score. If an integer, it will be used to generate `thresholds` thresholds
        uniformly distributed between the minimum and maximum predicted scores. If an
        array-like, it will be used as the thresholds.

    response_method : str
        The method to call on the estimator to get the response values.
    c                 :    t         |   ||||       || _        y )N)
score_funcsignkwargsrG   )rx   rL   _thresholds)r+   r   r   r   
thresholdsrG   ry   s         r-   rL   z_CurveScorer.__init__  s+    !+	 	 	
 &r/   c                      | |j                   |j                  |||j                        }|j                         |_        |S )z0Create a continuous scorer from a normal scorer.)r   r   rG   r   r   )_score_func_sign_kwargs_get_metadata_request_metadata_request)clsscorerrG   r   instances        r-   from_scorerz_CurveScorer.from_scorer  sC     ))+!>>
 &,%A%A%C"r/   c                 0   | j                         } ||| j                  ||      }i | j                  |}t        | j                  t
              rHt        j                  t        j                  |      t        j                  |      | j                        }	nt        j                  | j                        }	|	D 
cg c]9  }
| j                   | j                  |t        ||
|j                  |      fi |z  ; }}
t        j                  |      |	fS c c}
w )a  Evaluate predicted target values for X relative to y_true.

        Parameters
        ----------
        method_caller : callable
            Returns predictions given an estimator, method name, and other
            arguments, potentially caching results.

        estimator : object
            Trained estimator to use for scoring.

        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            Test data that will be fed to estimator.predict.

        y_true : array-like of shape (n_samples,)
            Gold standard target values for X.

        **kwargs : dict
            Other parameters passed to the scorer. Refer to
            :func:`set_score_request` for more details.

        Returns
        -------
        scores : ndarray of shape (thresholds,)
            The scores associated to each threshold.

        potential_thresholds : ndarray of shape (thresholds,)
            The potential thresholds used to compute the scores.
        r;   )_get_pos_label_response_methodr   
isinstancer   r   r3   linspaceminmaxasarrayr   r   r?   r]   r4   )r+   method_callerr*   rY   y_truer   r;   r8   scoring_kwargspotential_thresholdsthscore_thresholdss               r-   _scorez_CurveScorer._score  s   < '')	t,,a9
 4DLL3F3d&&1#%;;w$2B2B$  $&::d.>.>#?  +

 + JJd1R!3!3Y
 ! + 	 

 xx()+???

s   <>D)	rk   rl   rm   rn   rL   classmethodr   r   r   r   s   @r-   r   r     s'    2&  5@r/   r   c                    |at        ||      t        ||      }	}t        ||      t        ||      }}
t        |||      }t        |||      } | j                  ||
fi | n|||}}}	 || |	|fi |S )a  Fit a classifier and compute the scores for different decision thresholds.

    Parameters
    ----------
    classifier : estimator instance
        The classifier to fit and use for scoring. If `classifier` is already fitted,
        it will be used as is.

    X : {array-like, sparse matrix} of shape (n_samples, n_features)
        The entire dataset.

    y : array-like of shape (n_samples,)
        The entire target vector.

    fit_params : dict
        Parameters to pass to the `fit` method of the underlying classifier.

    train_idx : ndarray of shape (n_train_samples,) or None
        The indices of the training set. If `None`, `classifier` is expected to be
        already fitted.

    val_idx : ndarray of shape (n_val_samples,)
        The indices of the validation set used to score `classifier`. If `train_idx`,
        the entire set will be used.

    curve_scorer : scorer instance
        The scorer taking `classifier` and the validation set as input and outputting
        decision thresholds and scores as a curve. Note that this is different from
        the usual scorer that output a single score value:

        * when `score_method` is one of the four constraint metrics, the curve scorer
          will output a curve of two scores parametrized by the decision threshold, e.g.
          TPR/TNR or precision/recall curves for each threshold;
        * otherwise, the curve scorer will output a single score value for each
          threshold.

    score_params : dict
        Parameters to pass to the `score` method of the underlying scorer.

    Returns
    -------
    scores : ndarray of shape (thresholds,) or tuple of such arrays
        The scores computed for each decision threshold. When TPR/TNR or precision/
        recall are computed, `scores` is a tuple of two arrays.

    potential_thresholds : ndarray of shape (thresholds,)
        The decision thresholds used to compute the scores. They are returned in
        ascending order.
    indices)r   r   rB   )
classifierrY   rR   
fit_params	train_idxval_idxcurve_scorerscore_paramsX_trainX_valy_trainy_valfit_params_trainscore_params_vals                 r-   _fit_and_score_over_thresholdsr     s    z '95~a7Q'95~a7Q/:yQ/<Q
w<+;<)*A|&u
E5E4DEEr/   c                     t        j                  t        ||      D cg c]  \  }}t        j                  | ||       c}}d      S c c}}w )al  Compute the mean interpolated score across folds by defining common thresholds.

    Parameters
    ----------
    target_thresholds : ndarray of shape (thresholds,)
        The thresholds to use to compute the mean score.

    cv_thresholds : ndarray of shape (n_folds, thresholds_fold)
        The thresholds used to compute the scores for each fold.

    cv_scores : ndarray of shape (n_folds, thresholds_fold)
        The scores computed for each threshold for each fold.

    Returns
    -------
    mean_score : ndarray of shape (thresholds,)
        The mean score across all folds for each target threshold.
    r   )axis)r3   meanzipinterp)target_thresholdscv_thresholds	cv_scoressplit_thresholdssplit_scores        r-   _mean_interpolated_scorer   O  sX    & 77 25]I1N	
1N- + II')9;G1N	
  	
s   !A

c                        e Zd ZU dZi ej
                   e e e                   e	e
g eeddd      dgd edh       eed	d
d      gdgedgdgdgdZeed<   ddddddddd fd
Zd Zd Zd Zd Z xZS )TunedThresholdClassifierCVa>  Classifier that post-tunes the decision threshold using cross-validation.

    This estimator post-tunes the decision threshold (cut-off point) that is
    used for converting posterior probability estimates (i.e. output of
    `predict_proba`) or decision scores (i.e. output of `decision_function`)
    into a class label. The tuning is done by optimizing a binary metric,
    potentially constrained by a another metric.

    Read more in the :ref:`User Guide <TunedThresholdClassifierCV>`.

    .. versionadded:: 1.5

    Parameters
    ----------
    estimator : estimator instance
        The classifier, fitted or not, for which we want to optimize
        the decision threshold used during `predict`.

    scoring : str or callable, default="balanced_accuracy"
        The objective metric to be optimized. Can be one of:

        * a string associated to a scoring function for binary classification
          (see model evaluation documentation);
        * a scorer callable object created with :func:`~sklearn.metrics.make_scorer`;

    response_method : {"auto", "decision_function", "predict_proba"}, default="auto"
        Methods by the classifier `estimator` corresponding to the
        decision function for which we want to find a threshold. It can be:

        * if `"auto"`, it will try to invoke, for each classifier,
          `"predict_proba"` or `"decision_function"` in that order.
        * otherwise, one of `"predict_proba"` or `"decision_function"`.
          If the method is not implemented by the classifier, it will raise an
          error.

    thresholds : int or array-like, default=100
        The number of decision threshold to use when discretizing the output of the
        classifier `method`. Pass an array-like to manually specify the thresholds
        to use.

    cv : int, float, cross-validation generator, iterable or "prefit", default=None
        Determines the cross-validation splitting strategy to train classifier.
        Possible inputs for cv are:

        * `None`, to use the default 5-fold stratified K-fold cross validation;
        * An integer number, to specify the number of folds in a stratified k-fold;
        * A float number, to specify a single shuffle split. The floating number should
          be in (0, 1) and represent the size of the validation set;
        * An object to be used as a cross-validation generator;
        * An iterable yielding train, test splits;
        * `"prefit"`, to bypass the cross-validation.

        Refer :ref:`User Guide <cross_validation>` for the various
        cross-validation strategies that can be used here.

        .. warning::
            Using `cv="prefit"` and passing the same dataset for fitting `estimator`
            and tuning the cut-off point is subject to undesired overfitting. You can
            refer to :ref:`TunedThresholdClassifierCV_no_cv` for an example.

            This option should only be used when the set used to fit `estimator` is
            different from the one used to tune the cut-off point (by calling
            :meth:`TunedThresholdClassifierCV.fit`).

    refit : bool, default=True
        Whether or not to refit the classifier on the entire training set once
        the decision threshold has been found.
        Note that forcing `refit=False` on cross-validation having more
        than a single split will raise an error. Similarly, `refit=True` in
        conjunction with `cv="prefit"` will raise an error.

    n_jobs : int, default=None
        The number of jobs to run in parallel. When `cv` represents a
        cross-validation strategy, the fitting and scoring on each data split
        is done in parallel. ``None`` means 1 unless in a
        :obj:`joblib.parallel_backend` context. ``-1`` means using all
        processors. See :term:`Glossary <n_jobs>` for more details.

    random_state : int, RandomState instance or None, default=None
        Controls the randomness of cross-validation when `cv` is a float.
        See :term:`Glossary <random_state>`.

    store_cv_results : bool, default=False
        Whether to store all scores and thresholds computed during the cross-validation
        process.

    Attributes
    ----------
    estimator_ : estimator instance
        The fitted classifier used when predicting.

    best_threshold_ : float
        The new decision threshold.

    best_score_ : float or None
        The optimal score of the objective metric, evaluated at `best_threshold_`.

    cv_results_ : dict or None
        A dictionary containing the scores and thresholds computed during the
        cross-validation process. Only exist if `store_cv_results=True`. The
        keys are `"thresholds"` and `"scores"`.

    classes_ : ndarray of shape (n_classes,)
        The class labels.

    n_features_in_ : int
        Number of features seen during :term:`fit`. Only defined if the
        underlying estimator exposes such an attribute when fit.

    feature_names_in_ : ndarray of shape (`n_features_in_`,)
        Names of features seen during :term:`fit`. Only defined if the
        underlying estimator exposes such an attribute when fit.

    See Also
    --------
    sklearn.model_selection.FixedThresholdClassifier : Classifier that uses a
        constant threshold.
    sklearn.calibration.CalibratedClassifierCV : Estimator that calibrates
        probabilities.

    Examples
    --------
    >>> from sklearn.datasets import make_classification
    >>> from sklearn.ensemble import RandomForestClassifier
    >>> from sklearn.metrics import classification_report
    >>> from sklearn.model_selection import TunedThresholdClassifierCV, train_test_split
    >>> X, y = make_classification(
    ...     n_samples=1_000, weights=[0.9, 0.1], class_sep=0.8, random_state=42
    ... )
    >>> X_train, X_test, y_train, y_test = train_test_split(
    ...     X, y, stratify=y, random_state=42
    ... )
    >>> classifier = RandomForestClassifier(random_state=0).fit(X_train, y_train)
    >>> print(classification_report(y_test, classifier.predict(X_test)))
                  precision    recall  f1-score   support
    <BLANKLINE>
               0       0.94      0.99      0.96       224
               1       0.80      0.46      0.59        26
    <BLANKLINE>
        accuracy                           0.93       250
       macro avg       0.87      0.72      0.77       250
    weighted avg       0.93      0.93      0.92       250
    <BLANKLINE>
    >>> classifier_tuned = TunedThresholdClassifierCV(
    ...     classifier, scoring="balanced_accuracy"
    ... ).fit(X_train, y_train)
    >>> print(
    ...     f"Cut-off point found at {classifier_tuned.best_threshold_:.3f}"
    ... )
    Cut-off point found at 0.342
    >>> print(classification_report(y_test, classifier_tuned.predict(X_test)))
                  precision    recall  f1-score   support
    <BLANKLINE>
               0       0.96      0.95      0.96       224
               1       0.61      0.65      0.63        26
    <BLANKLINE>
        accuracy                           0.92       250
       macro avg       0.78      0.80      0.79       250
    weighted avg       0.92      0.92      0.92       250
    <BLANKLINE>
    r"   Nleft)closedz
array-like	cv_objectprefitr   g      ?neitherru   random_state)scoringr   cvrefitn_jobsr   store_cv_resultsrH   balanced_accuracyrE   d   TF)r   rG   r   r   r   r   r   r   c                    t         
|   ||       || _        || _        || _        || _        || _        || _        |	| _        y rw   )	rx   rL   r   r   r   r   r   r   r   )r+   r*   r   rG   r   r   r   r   r   r   ry   s             r-   rL   z#TunedThresholdClassifierCV.__init__!  sJ     	9oN$
( 0r/   c           
          t         j                  t              r;d j                  cxk  rdk  r&n n#t        d j                   j                        n j                  dk(  r= j
                  du rt        d      	 t         j                  d        j                  nDt         j                  d
       j
                  du rj                         dkD  rt        d      t         dfi | j                          _        dk(  r6 j                   _         j                  d	t!        t#                    fg}n
t%         j                         _        t%         j                         j&                  fi j(                  j&                  } j
                  rj                  j*                  }}}nnt-         j&                  fi j(                  j&                        \  }	}
t/        |	      }t/        |	      }t1        j                  j*                  |	      }  j                  j*                  ||fi | t3         t5         j6                         fd|D               \  }}t9        d |D              rt        d      t;        d |D              }t=        d |D              }t         j>                  t@              r#tC        jD                  || j>                        }ntC        jF                   j>                        }tI        |||      }|jK                         }||    _&        ||    _'         jP                  r
||d _)         S # t        $ r}t        d      |d	}~ww xY w)a  Fit the classifier and post-tune the decision threshold.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            Training data.

        y : array-like of shape (n_samples,)
            Target values.

        **params : dict
            Parameters to pass to the `fit` method of the underlying
            classifier and to the `scoring` scorer.

        Returns
        -------
        self : object
            Returns an instance of self.
        r   r"   )n_splits	test_sizer   r   Tz'When cv='prefit', refit cannot be True.r]   z-When cv='prefit', `estimator` must be fitted.N)rR   r   Fz1When cv has several folds, refit cannot be False.rB   r   )r   c              3      K   | ]f  \  }} t        t              d k7  rt              nj                  j                  ||j
                  j                  j                         h yw)r   )r   r   r   r   r   N)r   r   r   r*   rB   _curve_scorerr   score)	.0r   r   rY   r   r   r{   r+   rR   s	      r-   	<genexpr>z2TunedThresholdClassifierCV._fit.<locals>.<genexpr>}  sw      * +1&Iw 867)+xE*%Z,66::'#!%!3!3!.!5!5!;!;	 	 +1s   A,A/c              3   T   K   | ]   }t        j                  |d    |d          " yw)r   N)r3   isclose)r   r   s     r-   r   z2TunedThresholdClassifierCV._fit.<locals>.<genexpr>  s$     A=Rrzz"Q%B(=s   &(zrThe provided estimator makes constant predictions. Therefore, it is impossible to optimize the decision threshold.c              3   <   K   | ]  }|j                           y wrK   )r   r   r   s     r-   r   z2TunedThresholdClassifierCV._fit.<locals>.<genexpr>        
;H'7  "=   c              3   <   K   | ]  }|j                           y wrK   )r   r   s     r-   r   z2TunedThresholdClassifierCV._fit.<locals>.<genexpr>  r   r   )num)r   scores)*r   r   r   r#   r   r   rW   r    r*   r   r$   get_n_splitsr   _get_curve_scorerr   r'   ranger   r   splitsplitterrB   nextr   r   r   r   r   anyr   r   r   r   r3   r   r   r   argmaxbest_score_best_threshold_r   cv_results_)r+   rY   rR   rZ   excsplitsr   r   r   r   r   r   r   min_thresholdmax_thresholddecision_thresholdsobjective_scoresbest_idxr   r   r{   s   ```               @@@r-   rX   zTunedThresholdClassifierCV._fit7  s=   ( dggt$TWWq'dggD<M<MB WW zzT! !JKK
;
 B$''Q48BzzU"r'81'< !TUU'e>v>!335 >"nnDOJU<?345F#DNN3DOt~~.JRXXaCm&<&<&B&BCFzz56=;R;R;V;V"2  $HBHHQ$R]5K5K5Q5Q$RS	1(I6(I6#7}..22I$   DOOE4DE#&)XT[[) * * +1* $
 	=  A=AAA   
;H
 
  
;H
 
 doox0"$++}$//# #%**T__"=3	
 $**,+H528<  1* D
 q " $Gs   M, ,	N5NNc                     t        | d       | j                  j                         }t        | j                  || j                         |      \  }}t        || j                  | j                  |      S )r}   r'   r   )	r    r   r   r   r'   rN   r?   r   r]   )r+   rY   r;   r8   r   s        r-   r   z"TunedThresholdClassifierCV.predict  sk     	l+&&557	0OO%%'	

 1T))4==)
 	
r/   c                    t        | j                  j                        j                  | j                  t               j                  dd            j                  | j                  t               j                  dd            j                  | j                         t               j                  dd            }|S )	r   r   rB   r   r   r   )r   r   r   )r   r   )r   ry   rk   r   r*   r   r   r   r   s     r-   r   z/TunedThresholdClassifierCV.get_metadata_routing  s     !8!89S..,22%2N   S,22'%2P   S--/,22'%2P   	 r/   c                     t        | j                  | j                        }t        j	                  || j                         | j                        }|S )z8Get the curve scorer based on the objective metric used.)r   )r   r*   r   r   r   rN   r   )r+   r   r   s      r-   r   z,TunedThresholdClassifierCV._get_curve_scorer  sB    E#//T..0$//
 r/   )rk   rl   rm   rn   rA   rH   r   setr   callabler   r   r   r   rp   rq   rL   rX   r   r   r   r   r   s   @r-   r   r   k  s    `D$
!
8
8$ s+-./

  !T&A<Pz"Zc)<

 T"'(&K!$D . $1,un
4:r/   r   )9collections.abcr   numbersr   r   numpyr3   baser   r   r	   r
   r   
exceptionsr   metricsr   r   metrics._scorerr   utilsr   utils._param_validationr   r   r   r   utils._responser   utils.metadata_routingr   r   r   r   utils.metaestimatorsr   utils.multiclassr   utils.parallelr   r   utils.validationr   r   r    r!   _splitr#   r$   r1   r?   rA   rt   r   r   r   r   r0   r/   r-   <module>r     s    * "   ( * " R R 9  0 - .  5"	Wa
o/A= a
Hq6 qhf@; f@RFFR8@!8 @r/   