
    {Kg                        d dl Z d dlmZ d dlZd dlmZ d dlmZ d dlm	Z	m
Z
mZmZmZmZ 	 d dlmZ d dlZd dlmZ d d	lmZ d d
lmZmZmZmZmZmZmZmZmZm Z m!Z!m"Z"m#Z#m$Z$m%Z%m&Z&m'Z'm(Z(m)Z)m*Z*m+Z+m,Z,m-Z-m.Z.m/Z/m0Z0m1Z1m2Z2m3Z3 d dl4m5Z5 d dl6m7Z7m8Z8m9Z9m:Z: d dl;m<Z<m=Z=m>Z>m?Z?m@Z@mAZAmBZB d dlCmDZDmEZE d ZFej                  j                  de=      ej                  j                  de>      ej                  j                  de<      ej                  j                  de?      d                             ZIej                  j                  de      d        ZJd ZKej                  j                  de,e0g      d        ZLd ZM ej                  dd      j                  dd      dd ZP ej                  dd      j                  dd      dd ZQd! ZRej                  j                  d"e,d#i f ej                  e,eeP       ej                  e,d$eP       ej                  e,eeQej                  j                  eB eAd%      k\  d&'      (       ej                  e,d)eQej                  j                  eB eAd%      k\  d&'      (      e0d*d+dife0eRd,d-ifg      ej                  j                  d.ej                  ej                  eWg      d/               ZXd0 ZYej                  j                  dg d1      ej                  j                  de?      d2               ZZd3 Z[d4 Z\ej                  j                  d5 ej                               ej                  j                  de?      d6               Z^d7 Z_ej                  j                  d8e@      ej                  j                  de?      d9               Z`d: Zad; Zbd< Zcej                  j                  d=d> d? d@ ge?D  cg c]  } | fdA	 c} z   e@D cg c]  }|fdB	 c}z         dC        Zdej                  j                  dDdE eedFfdG eedHfdI eedJfdK efdLfdM efdNfdO efdPfg      dQ        ZgddRZhej                  j                  ddS      dT        Ziej                  j                  ddS      dU        Zje:dV        Zkej                  j                  dWej                  ge?z   dXge?D cg c]  }|j                   c}z   Y      ej                  j                  dZej                  ge?z   dXge?D cg c]  }|j                   c}z   Y      d[               Znej                  j                  dZej                  ge?z   dXge?D cg c]  }|j                   c}z   Y      d\        Zoej                  j                  d]d^dg      d_        Zpd` Zqej                  j                  dWej                  ge?z   dXge?D cg c]  }|j                   c}z   Y      ej                  j                  dZej                  ge?z   dXge?D cg c]  }|j                   c}z   Y      da               Zrej                  j                  dWej                  ge?z   dXge?D cg c]  }|j                   c}z   Y      db        Zsej                  j                  dcg dd      ej                  j                  dWej                  ge?z   dXge?D cg c]  }|j                   c}z   Y      ej                  j                  dZej                  ge?z   dXge?D cg c]  }|j                   c}z   Y      de                      Ztej                  j                  dcg dd      ej                  j                  dWej                  ge?z   dXge?D cg c]  }|j                   c}z   Y      df               Zuej                  j                  dgej                  dhdif ej                  ej                  djdkej                  j                  dl'      (      g      ej                  j                  dmddng      do               Zwej                  j                  dpd^dg      dq        Zxej                  j                  dr ej                  ej                  d gg       ej                  d ej                   gg      g      ej                  j                  ds ej                  ej                  d gg       ej                  d ej                   gg      dg      dt               Zzej                  j                  du ej                  d dgdd gg       ej                  dv      ej                  f ej                  d dgdej                  gg       ej                  dv      ej                  f ej                  ej                  dgdej                  gg      ej                  ej                  f ej                  ej                  dgej                  d gg       ej                  dv      ej                  f ej                  d ej                  gdej                  gg       ej                  dv      ej                  f ej                  d dgdd gg       ej                  dv      dwf ej                  d dgddwgg       ej                  dv      dwf ej                  dwdgddwgg      ej                  dwf ej                  dwdgdwd gg       ej                  dv      dwf ej                  d dwgddwgg       ej                  dv      dwfg
      dx        Z}ej                  j                  dyej                  dwg      dz        Z~ej                  j                  dyej                  dwg      d{        Zej                  j                  dyej                  dwg      d|        Zd} Zd~ Zd Zd Zd Zd Zej                  j                  de%e1e2e$e3e!f      d        Zej                  j                  de%e1e2e$e3e!f      ej                  j                  de?      d               Zd Zd Zd Zej                  j                  dde%fde!fg      ej                  j                  de?      d               Zej                  j                  de?      d        Zd Zd Zd Zd Zej                  j                  de?      d        Zd Zd Zd Zej                  j                  dddvg      ej                  j                  dddg      ej                  j                  de,e/g      d                      Zej                  j                  dddg      d        Zej                  j                  dg d      ej                  j                  dd^dgddgY      d               Zej                  j                  dg ddg dg dg dgfg dddgddgddgddggfg      d        Zd Zej                  j                  de?      d        Zy# e$ r
 d dlmZ Y w xY wc c} w c c}w c c}w c c}w c c}w c c}w c c}w c c}w c c}w c c}w c c}w )    N)GeneratorType)linalg)issparse)cdist	cityblockcosine	minkowskipdist
squareform)
wminkowski)r	   )config_context)DataConversionWarning)PAIRED_DISTANCESPAIRWISE_BOOLEAN_FUNCTIONSPAIRWISE_DISTANCE_FUNCTIONSPAIRWISE_KERNEL_FUNCTIONS_euclidean_distances_upcastadditive_chi2_kernelcheck_paired_arrayscheck_pairwise_arrayschi2_kernelcosine_distancescosine_similarityeuclidean_distanceshaversine_distanceslaplacian_kernellinear_kernelmanhattan_distancesnan_euclidean_distancespaired_cosine_distancespaired_distancespaired_euclidean_distancespaired_manhattan_distancespairwise_distancespairwise_distances_argminpairwise_distances_argmin_minpairwise_distances_chunkedpairwise_kernelspolynomial_kernel
rbf_kernelsigmoid_kernel)	normalize)assert_allcloseassert_almost_equalassert_array_equalignore_warnings)BSR_CONTAINERSCOO_CONTAINERSCSC_CONTAINERSCSR_CONTAINERSDOK_CONTAINERSparse_version
sp_version)Paralleldelayedc                 	   t         j                  j                  d      }|j                  d      j	                  | d      }t        |d      }t        |      }t        ||       |j                  |j                  cxk(  r| k(  sJ  J |j                  d      j	                  | d      }t        ||d      }t        ||      }t        ||       |j                  |j                  cxk(  r| k(  sJ  J |j                  d      j	                  | d      }|j                  d      j	                  | d      }t         j                  |d<   t         j                  |d<   t        ||d	      }t        ||      }	t        ||	       |j                  |	j                  cxk(  r| k(  sJ  J t        |D 
cg c]  }
t        |
D cg c]  }| c}       c}}
      }t        |D 
cg c]  }
t        |
D cg c]  }| c}       c}}
      }t        ||d      }t        ||       |j                  |j                  cxk(  r| k(  sJ  J |j                  d
      j	                  | d      }|d d df   dz
  dz  t         j                  z  dz  |d d df<   |d d df   dz
  dz  t         j                  z  |d d df<   t        |d      }t        |      }t        ||       |j                  d      j	                  | d      }|d d df   dz
  dz  t         j                  z  dz  |d d df<   |d d df   dz
  dz  t         j                  z  |d d df<   t        ||d      }t        ||      }t        ||       t        |d      }t        |t              }|j                  d   |j                  d   k(  sJ |j                  d   |j                  d   k(  sJ t        ||       t        ||d      }t        ||t              }|j                  d   |j                  d   k(  sJ |j                  d   |j                  d   k(  sJ t        ||       t        ||d      }t        ||t               }|j                  d   |j                  d   k(  sJ |j                  d   |j                  d   k(  sJ t        ||       y c c}w c c}}
w c c}w c c}}
w )Nr         Fcopy	euclideanmetric   r=   r   r   nan_euclideanr<   rD         ?rD      	haversine)rD   rD   r   	manhattanr   )nprandomRandomStaterandom_sampleastyper$   r   r-   dtypenanr   tuplepir   r   shaper   )global_dtyperngXSS2YX_maskedY_maskedS_masked	S2_maskedrowvX_tuplesY_tupless                 g/home/alanp/www/video.onchill/myenv/lib/python3.12/site-packages/sklearn/metrics/tests/test_pairwise.py&test_pairwise_distances_for_dense_datare   M   s{   
))


"C 	&!((E(BA1[1A	Q	BAr77bhh.,..... 	&!((E(BA1a4A	Q	"BAr77bhh.,.....   (//5/IH  (//5/IHVVHTNVVHTN!(H_MH'(;IHi(>>Y__<<<<<< ;#e,1Q,-;<H;#e,1Q,-;<H	Hh{	CBAr77bhh.,.....
 	&!((E(BAAw}!BEE)A-AadGAw}!BEE)AadG1[1A	Q	BAr 	&!((E(BAAw}!BEE)A-AadGAw}!BEE)AadG1a4A	Q	"BAr
 	1[1A	Ai	0B771:###771:###Ar 	1a4A	Aq	3B771:###771:###Ar
 	1a1A	Aq	0B771:###771:###Ar_ -;,;s0   4S

	S	S

&S
4	S=	S
S

S
coo_containercsc_containerbsr_containercsr_containerc                    t         j                  j                  d      }|j                  d      j	                  |d      }|j                  d      j	                  |d      } ||      } ||      }	t        ||	d      }
t        ||	      }t        |
|       |
j                  |j                  cxk(  r|k(  sJ  J t        ||	d      }
t        ||	      }t        |
|       |
j                  |j                  cxk(  r|k(  sJ  J t        | ||      d	      }
t         ||       | |            }t        |
|       |t         j                  k(  r$|
j                  |j                  cxk(  r|k(  sLJ  J t        j                  t              5  |
j                  |j                  cxk(  r|k(  sJ  J 	 d d d        t        ||      }t        |
|       |t         j                  k(  r$|
j                  |j                  cxk(  r|k(  sLJ  J t        j                  t              5  |
j                  |j                  cxk(  r|k(  sJ  J 	 d d d        d
di}t        ||fddi|}
t        ||fdt        i|}t        |
|       d
di}t        |fddi|}
t        |fdt        i|}t        |
|       t        j                  t               5  t        |d       d d d        t        j                  t               5  t        ||	d       d d d        y # 1 sw Y   bxY w# 1 sw Y   xY w# 1 sw Y   SxY w# 1 sw Y   y xY w)Nr   r;   Fr>   rC   r@   rA   r   rK   p       @rB   r	   )rL   rM   rN   rO   rP   r$   r   r-   rQ   r   r   float64pytestraisesAssertionErrorr	   	TypeError)rf   rg   rh   ri   rV   rW   rX   r[   X_sparseY_sparserY   rZ   kwdss                rd   'test_pairwise_distances_for_sparse_dataru      s    ))


"C&!((E(BA&!((E(BA QHQH8XkBA	Xx	0BAr77bhh.,.....8Xh?A	(H	-BAr77bhh.,.....8]1%5kJA	]1-}Q/?	@BArrzz!ww"((2l22222
 ]]>*77bhh6,66666 + 
Q	"BArrzz!ww"((2l22222
 ]]>*77bhh6,66666 + :D1a<<t<A	Aq	;	;d	;BAr :D19[9D9A	A	8i	84	8BAr 
y	!8K8 
"	y	!1h{; 
"	!; +* +*  
"	!	!	!s0   %L&%L#L/>L;L #L,/L8;MrB   c           	      p   t         j                  j                  d      }|j                  dd      }|j	                         }d|d   z
  |d<   t        t              5  |d fD ]G  }t        |||       }t        j                  |dddd	       t        j                  |dk7        dk(  rGJ  	 d d d        d
| z  }t        j                  t        |      5  t        ||        d d d        t        j                  t        |      5  t        |j                  t              ||        d d d        t        j                         5  t        j                   dt               t        |j                  t              |        d d d        y # 1 sw Y   xY w# 1 sw Y   xY w# 1 sw Y   yxY w# 1 sw Y   y xY w)Nr   r<   r=   rI   rE   )categoryrA   F)rR   posinfneginfr?   z+Data was converted to boolean for metric %smatchr[   rB   error)rL   rM   rN   randnr?   r0   r   r$   
nan_to_numsumrn   warnsrP   boolwarningscatch_warningssimplefilter)rB   rW   rX   r[   Zresmsgs          rd   test_pairwise_boolean_distancer      sO    ))


"C		!QA	A!D'kAdG 
"7	8TA$Q&9CMM#1QquE66#(#q(((  
9 8&
@C	+3	71V, 
8 
+3	7188D>Qv> 
8 
	 	 	"g'<=188D>&9 
#	"# 
9	8 
8	7 
8	7 
#	"s7   AF)FF"F ;F,FF F),F5c                     t         j                  j                  d      } | j                  dd      }t	        j
                         5  t	        j                  dt               t        |d       d d d        y # 1 sw Y   y xY w)Nr   r<   r=   r}   r	   rA   )	rL   rM   rN   r~   r   r   r   r   r$   )rW   rX   s     rd   test_no_data_conversion_warningr      sX    
))


"C		!QA		 	 	"g'<=1[1 
#	"	"s   (A77B funcc                    t        j                  t        d      5   | t        j                  d      d       d d d        t        j                  t        d      5   | t        j                  d      t        j                  d      d       d d d        t        j                  t        d      5   | t        j                  d      t        j                  d      d       d d d        t        j                  d      } | |d      }||u sJ t        j                  d      } | |t        j                  d	      d      }||u sJ  | t        j
                  d
ggd      d      }d|j                  j                  k(  sJ  | dggd      }t        |t        j                        sJ y # 1 sw Y   wxY w# 1 sw Y   /xY w# 1 sw Y   xY w)Nz.* shape .*rz   )r<      precomputedrA   )r=   r=   )r=   r   r<   r<   )r   r   rI   intrQ   f      ?)
rn   ro   
ValueErrorrL   zerosarrayrQ   kind
isinstancendarray)r   rY   rZ   s      rd   test_pairwise_precomputedr   	  s[    
z	7RXXfm4 
8 
z	7RXXfrxx/F 
8 
z	7RXXfrxx/F 
8 	A	a	&B7N7
A	a&!-	8B7N7 	RXXse5)-@A!'',, 	seW]+Aa$$$1 
8	7 
8	7 
8	7s#   F/2F<22G	/F9<G	Gc                      t        j                  t        d      5  t        t	        j
                  dd      d       d d d        y # 1 sw Y   y xY w)Nz.* non-negative values.*rz   r   r   rA   )rn   ro   r   r$   rL   full     rd   &test_pairwise_precomputed_non_negativer   '  s3    	z)C	D27762.}E 
E	D	Ds   "AArI   r<   doubleFr>   )wrk   c                     t        t        j                  |       t        j                  |      fi |}|j                         S N)r*   rL   
atleast_2ditem)xyrt   Ks       rd   callable_rbf_kernelr   1  s0    2==#R]]1%5>>A668Or   zfunc, metric, kwdsr@   r	   z1.6.0z;wminkowski is now minkowski and it has been already tested.)reason)marksr   
polynomialdegreegamma皙?rQ   c                 z   t         j                  j                  d      }t        j                  d|j	                  d      z  |      }t        j                  d|j	                  d      z  |      } | |f|dd|} | |f|dd|}t        ||        | ||f|dd|} | ||f|dd|}t        ||       y )	Nr   r<   r;   r   r   r=   rI   rB   n_jobsrD   )rL   rM   rN   r   rO   r-   )	r   rB   rt   rQ   rW   rX   r[   rY   rZ   s	            rd   test_pairwise_parallelr   8  s    L ))


"C
S&&v..e<A
S&&v..e<AQ0va040A	a	1q	1D	1BArQ3&3d3A	a	46!	4t	4BArr   c                  4    t        dggd       d   dk(  sJ y )Nr   c                      y)Nr<   r   r   r   s     rd   <lambda>z9test_pairwise_callable_nonstrict_metric.<locals>.<lambda>o  s    1r   rA   rE   r<   )r$   r   r   rd   'test_pairwise_callable_nonstrict_metricr   k  s"     ugn=dCqHHHr   )rbf	laplaciansigmoidr   linearchi2additive_chi2c                    t         j                  j                  d      }|j                  d      }|j                  d      }t        |    }t        ||       } ||      }t        ||       t        |||       } |||      }t        ||       t        |D 	cg c]  }t        |D 	cg c]  }	|	 c}	       c}	}      }
t        |D 	cg c]  }t        |D 	cg c]  }	|	 c}	       c}	}      }t        |
||       }t        ||        ||      } ||      }| dv ry t        |||       }t        ||       y c c}	w c c}	}w c c}	w c c}	}w )Nr   r;   rC   rA   r|   r[   )r   r   )rL   rM   rN   rO   r   r(   r-   rS   )rB   ri   rW   rX   r[   functionK1K2r`   ra   rb   rc   rr   rs   s                 rd   test_pairwise_kernelsr   s  s?    ))


"C&!A&!A(0H	!F	+B	!BB	!q	0B	!q	BB;#e,1Q,-;<H;#e,1Q,-;<H	(HV	<BB QHQH**	(hv	>BB -;,;s0   E
(	D>1	E
E
	E	#	E
>E
	E
c                  >   t         j                  j                  d      } | j                  d      }| j                  d      }t        }ddi}t        |f||d|}t        |fd|i|}t        ||       t        |f||d|}t        |fd|i|}t        ||       y )Nr   r;   rC   r   r   r|   r[   )rL   rM   rN   rO   r   r(   r*   r-   )rW   rX   r[   rB   rt   r   r   s          rd   test_pairwise_kernels_callabler     s     ))


"C&!A&!A FS>D	!	8q	84	8B	A	#	#d	#BB 
!	8q	84	8B	A	#	#d	#BBr   c                  ^   t         j                  j                  d      } | j                  d      }| j                  d      }t	        ||d      }ddd}t        ||fdd	d
|}t        ||       t        j                  t              5  t        ||fddi| d d d        y # 1 sw Y   y xY w)Nr   r;   rC   r   r   z:))r   blablar   T)rB   filter_paramsrB   )
rL   rM   rN   rO   r*   r(   r-   rn   ro   rq   )rW   rX   r[   r   paramsr   s         rd   "test_pairwise_kernels_filter_paramr     s    
))


"C&!A&!A1as#Ad+F	!Q	KuD	KF	KBAr	y	!A6e6v6 
"	!	!s   
B##B,zmetric, funcc                    t         j                  j                  d      }|j                  d      }|j                  d      }t	        |||       } |||      }t        ||        | ||       ||            }t        ||       | t        v r1t        |    ||      }	t        j                  |	      }	t        |	|       y y )Nr   r;   rA   )rL   rM   rN   rO   r!   r-   r   diag)
rB   r   ri   rW   rX   r[   rY   rZ   S3	distancess
             rd   test_paired_distancesr     s     ))


"C&!A&!AAf-A	aBAr	mAa 0	1BAr,, 071=	GGI&		1% -r   c                    t         j                  j                  d      }|j                  d      j	                  | d      }|j                  d      j	                  | d      }t        ||d      }t        ||d       }t        ||       |j                  d      }t        j                  t              5  t        ||       d d d        y # 1 sw Y   y xY w)	Nr   r;   Fr>   rK   rA   c                 R    t        j                  | |z
        j                  d      S )Nr   axis)rL   absr   r   s     rd   r   z0test_paired_distances_callable.<locals>.<lambda>  s    BFF1q5M4E4E14E4Mr   r   )
rL   rM   rN   rO   rP   r!   r-   rn   ro   r   )rV   rW   rX   r[   rY   rZ   s         rd   test_paired_distances_callabler     s     ))


"C&!((E(BA&!((E(BAAk2A	!Q'M	NBAr 	&!A	z	"A 
#	"	"s   7CCdok_containerc                 |   t        j                  dgdgg|      }t        j                  dgdgg|      } | |      } |||      }ddg}ddg}ddg}	t        ||d	      \  }
}t        ||d	      }t	        |
|       t	        ||       t	        ||       t        ||d	      \  }}t        ||d	      }t	        ||       t	        ||       t	        ||       t        |      t         j                  k(  sJ t        |      t         j                  k(  sJ t        ||d
	      \  }
}t        ||dddi      \  }}t        ||d
	      }t        ||dddi      }t	        ||	       t	        ||	       t	        |
|       t	        ||       t	        ||       t	        ||       t        ||d	      \  }
}t        ||d	      }t	        |
|       t	        ||       t	        ||       t        ||d	      \  }}t        ||d	      }t	        ||       t	        ||       t	        ||       t        ||t        ddi      \  }
}t	        |
|       t	        ||       t        ||dddi      \  }
}t	        |
|       t	        ||       t         j                  j                  d      }|j                  dd      }|j                  dd      }t        ||d	      }|j                  d      }||t        t        |            f   }t        ||dd      \  }}t	        ||d       t	        ||d       t        ||d      \  }}t        ||d      \  }}t	        ||       t        ||       t        ||d      \  }}t        ||d      \  }}t	        ||       t        ||       t        ||d      }t        ||d      }t        ||       t        ||d      }t        ||d      }t        ||       t        ||      }t        t        j                   |      t        j                   |            }t        ||       y )Nr   rI   r   r   rD   r=   r@   rA   sqeuclideansquaredT)rB   metric_kwargsrK   rk   r	   a      o   r   )r   rB   Hz>rtol)rL   asarrayr&   r%   r-   typer   r	   rM   rN   r~   r$   argminrangelenr/   asfortranarray)r   ri   rV   rX   r[   XspYspexpected_idxexpected_valsexpected_vals_sqidxvalsidx2idxspvalsspidxsp2vals2idx3idx4rW   distdist_orig_inddist_orig_valdist_chunked_inddist_chunked_valargmin_0dist_0argmin_1dist_1argmin_C_contiguousargmin_F_contiguouss                                  rd   "test_pairwise_distances_argmin_minr    s6    	

QC!:\2A


RD1#;l3A

C

.Cq6LFM1v .a;GIC$Q+>DC&D,'D-(1#s;OME6&sCDFE<(FL)FM*;"**$$$<2::%%% .a=IIC/	1[D0AKD% %Q-@D$	1[D0AD D*+E+,C&D,'D,'D,' .a;GIC$Q+>DC&D,'D-(1#s;OME6&sCDFE<(FL)FM* .	1YsAhIC C&D-( .	1[aIC C&D-( ))


"C		"cA		#sAa;7DKKQK'Mc-.@(AABM)F	11[*&& M#3$?M#3$? 5QBHf4QBHfFF#x*4QBHf4QBHfFF#x* )AA6H(AA6Hx*(AA6H(AA6Hx* 4Aq93
!b//2 *,?@r   c                     | d d d df   S )Nd   r   r   starts     rd   _reduce_funcr  ]  s    4C4=r   c                    t         j                  j                  d      }|j                  d      j	                  | d      }t        |      d d d df   }t        |d t        d      }t        |t              sJ t        |      }t        |      dkD  sJ |d   j                  |j                  k(  sJ t        t        j                  |      |d	
       y )Nr   )i  r=   Fr>   r        >reduce_funcworking_memoryrI   r   atol)rL   rM   rN   rO   rP   r$   r'   r  r   r   listr   rQ   r-   vstack)rV   rW   rX   rY   S_chunkss        rd   &test_pairwise_distances_chunked_reducer  a  s    
))


"C(#**<e*DA1a#g&A)	4\&H h...H~Hx=1A;''' BIIh'6r   c                 (   t         j                  j                  d      }|j                  d      j	                  | d      }t        |d d d      }t        |t              sJ t        |      }t        |      dkD  sJ t        d	 |D              sJ y )
Nr   
   r=   Fr>   c                      y r   r   r	  s     rd   r   z=test_pairwise_distances_chunked_reduce_none.<locals>.<lambda>w  s    r   r  r  rI   c              3   $   K   | ]  }|d u  
 y wr   r   ).0chunks     rd   	<genexpr>z>test_pairwise_distances_chunked_reduce_none.<locals>.<genexpr>|  s     3(u}(s   )rL   rM   rN   rO   rP   r'   r   r   r  r   all)rV   rW   rX   r  s       rd   +test_pairwise_distances_chunked_reduce_noner   r  s    
))


"C'")),U)CA)	45fH h...H~Hx=13(3333r   good_reducec                     t        |       S r   r  Dr
  s     rd   r   r     s    ar   c                 ,    t        j                  |       S r   )rL   r   r$  s     rd   r   r     s    !r   c                 .    t        |       t        |       fS r   r#  r$  s     rd   r   r     s    $q'47+r   c                      ||       S r   r   )r%  r
  scipy_csr_types      rd   r   r     s	    q8Ir   c                 P     ||       t        j                  |       t        |       fS r   )rL   r   r  )r%  r
  scipy_dok_types      rd   r   r     s!    1HHQKG9
r   c                     t        j                  d      j                  dd      }t        |d | d      }t	        |       y )Nr  r   rI   @   r  )rL   arangereshaper'   next)r!  rX   r  s      rd   ,test_pairwise_distances_chunked_reduce_validr1    s:    * 			"b!$A)	4[H 	Nr   )
bad_reduceerr_typemessagec                 6    t        j                  | | dd  g      S Nr   rL   concatenater%  ss     rd   r   r     s    AbcF4r   zlength 11\..* input: 10\.c                 :    | t        j                  | | dd  g      fS r6  r7  r9  s     rd   r   r     s    !R^^Q"#K89r   z!length \(10, 11\)\..* input: 10\.c                     | d d | fS )N	   r   r9  s     rd   r   r     s    q!uajr   z length \(9, 10\)\..* input: 10\.c                      y)N   r   r9  s     rd   r   r     s    r   z2returned 7\. Expected sequence\(s\) of length 10\.c                      y)N)r?     r   r9  s     rd   r   r     s    r   z9returned \(7, 8\)\. Expected sequence\(s\) of length 10\.c                 0    t        j                  d      dfS )Nr  r=  )rL   r.  r9  s     rd   r   r     s    "))B-+r   z-, 9\)\. Expected sequence\(s\) of length 10\.c                     t        j                  d      j                  dd      j                  | d      }t	        |d |d      }t        j                  ||      5  t        |       d d d        y # 1 sw Y   y xY w)	Nr  r   rI   Fr>   r-  r  rz   )rL   r.  r/  rP   r'   rn   ro   r0  )rV   r2  r3  r4  rX   r  s         rd   .test_pairwise_distances_chunked_reduce_invalidrD    se    D 			"b!$++Lu+EA)	4ZH 
xw	/X 
0	/	/s   A22A;c                 :   t        | |||      }t        |t              sJ t        |      }|| n|}t	        |      dz  dz  }|D ]"  }|j
                  }|t        ||      dz  k  r"J  t        j                  |      }t        | ||      }	t        ||	d       y )Nr  rB   rA  g      >i   rA   r   r  )r'   r   r   r  r   nbytesmaxrL   r  r$   r-   )
rX   r[   r  rB   genblockwise_distancesmin_block_mibblockmemory_usedrY   s
             rd    check_pairwise_distances_chunkedrN    s    
$Q.QW
XCc=)))s)YAAFQJ'M$llc.-@5HHHH % ))$781a/A'6r   )r@   l2r   c                 @   t         j                  j                  d      }|j                  dd      j	                  |d      }t        t        |d|             }t        |      dkD  sJ t        t        j                  t        j                  |            dd	
       y )Nr     r      _BsizescaleFr>   rI   rF  绽|=r   )rL   rM   rN   normalrP   r  r'   r   r-   r   r  )rB   rV   rW   rX   chunkss        rd   (test_pairwise_distances_chunked_diagonalrZ    sz    
))


"C


$
/66|%6PA,QqPQFv;??BGGBIIf-.>r   c                     t         j                  j                  d      }|j                  dd      j	                  |d      }t        || d      }t        t        j                  |      dd	
       y )Nr   rQ  rS  rT  Fr>   rD   r   rW  r  )rL   rM   rN   rX  rP   r$   r-   r   )rB   rV   rW   rX   r   s        rd   )test_parallel_pairwise_distances_diagonalr\    s[    
))


"C


$
/66|%6PA"1VA>IBGGI&6r   c                    t         j                  j                  d      }|j                  d      j	                  | d      }t        |d dd       t        dd      D ]  }t        |d d	|z  d        t        |j                         d dd       |j                  d
      j	                  | d      }t        ||dd       t        |j                         |j                         dd       t        ||dd       t        ||dd       t        |      }t        |dd      }t        |t              sJ t        |      |u sJ t        j                  t              5  t        |       d d d        y # 1 sw Y   y xY w)Nr   )   r=   Fr>   rI   r@   rF  irD   )r  r=   i'  r   r  r   )rL   rM   rN   rO   rP   rN  r   tolistr$   r'   r   r   r0  rn   ro   StopIteration)rV   rW   rX   powerr[   r%  rI  s          rd   test_pairwise_distances_chunkedrb    sJ    ))


"C(#**<e*DA$QQ{SsA(tAuH[	
 
 %	
D; 	(#**<e*DA$Q!KP$	
AHHJq %Q%T %Q!KP 	1A
$Qvm
TCc=)))9>>	}	%S	 
&	%	%s   E33E<x_array_constrdense)idsy_array_constrc                 f     | dgg      } |dgdgg      }t        ||      }t        |ddgg       y Nr   rI   rD   r   rl   )r   r-   )rc  rf  rX   r[   r%  s        rd   %test_euclidean_distances_known_resultri    s@     	uAaSz"AAq!AAc
|$r   c                 v   t         j                  j                  d      }|j                  d      j	                  | d      }|j                  d      j	                  | d      }|j	                  t         j
                        dz  j                  d      j                  dd	      }|j	                  t         j
                        dz  j                  d      j                  dd	      } ||      }t        ||      }t        |||
      }t        |||      }	t        ||||      }
t        ||       t        |	|       t        |
|       t        ||t        j                  |      t        j                  |            }t        j                  t              5  t        ||       d d d        y # 1 sw Y   y xY w)Nr   r  r  Fr>      r  rD   rI   r   r   X_norm_squaredY_norm_squaredro  rq  )rL   rM   rN   rO   rP   rm   r   r/  r   r-   
zeros_likern   ro   rp   )rV   rf  rW   rX   r[   	X_norm_sq	Y_norm_sqD1D2D3D4wrong_Ds               rd   #test_euclidean_distances_with_normsr{    sl    ))


"C(#**<e*DA(#**<e*DA "**%*//Q/7??2FI"**%*//Q/7??2FIqA	Q	"B	Q)	<B	Q)	<B	Q)I	VBBBB "		}}Y/}}Y/	G 
~	&$ 
'	&	&s   F//F8	symmetricTc                 L   t         j                  j                  |       }|j                  d      }|r|n|j                  d      }|j	                  t         j
                        dz  j                  d      j                  dd      }|j	                  t         j
                        dz  j                  d      j                  dd      }t        ||      }t        |||      }t        |||      }	t        ||||	      }
t        ||       t        |	|       t        |
|       y )
Nrk  rl  rD   rI   r   r   rn  rp  rr  )
rL   rM   rN   rO   rP   float32r   r/  r   r-   )global_random_seedr|  rW   rX   r[   rt  ru  rv  rw  rx  ry  s              rd   &test_euclidean_distances_float32_normsr  B  s     ))

 2
3C(#AC--h7A"**%*//Q/7??2FI"**%*//Q/7??2FI	Q	"B	Q)	<B	Q)	<B	Q)I	VBBBBr   c            	         t         j                  j                  d      } | j                  d      }| j                  d      }|dz  j	                  d      }|dz  j	                  d      }t        ||||      }t        |||j                  dd      |j                  dd            }t        |||j                  dd      |j                  dd            }t        ||       t        ||       t        j                  t        d	
      5  t        |||d d        d d d        t        j                  t        d
      5  t        |||d d        d d d        y # 1 sw Y   ?xY w# 1 sw Y   y xY w)Nr   rk  rl  rD   rI   r   rr  r   zIncompatible dimensions for Xrz   r<   rn  zIncompatible dimensions for Yrp  )rL   rM   rN   rO   r   r   r/  r-   rn   ro   r   )rW   rX   r[   ro  rq  rv  rw  rx  s           rd   $test_euclidean_distances_norm_shapesr  S  sO   
))


"C(#A(#AdZZQZ'NdZZQZ'N		1^N
B 
		%--b!4%--b!4	
B 
		%--a4%--a4	
B BB	z)H	IAq1CD 
J	z)H	IAq1CD 
J	I 
J	I	I	Is   EE(E%(E1c                 x   t         j                  j                  d      }|j                  d      j	                  | d      }d||dk  <   |j                  d      j	                  | d      }d||dk  <   t        ||      } ||      } ||      }t        ||      }t        ||d       |j                  | k(  sJ y )	Nr   r  r  Fr>   皙?rk  ư>r   )	rL   rM   rN   rO   rP   r   r   r-   rQ   )rV   rc  rf  rW   rX   r[   expectedr   s           rd   test_euclidean_distancesr  u  s     ))


"C)$++Lu+EAAa#gJ(#**<e*DAAa#gJQ{HqAqA#Aq)I Ixd3??l***r   c                 "   t         j                  j                  d      }|j                  d      j	                  | d      }d||dk  <   t        t        |            } ||      }t        |      }t        ||d       |j                  | k(  sJ y )Nr   r  Fr>   r  r  r   )
rL   rM   rN   rO   rP   r   r
   r   r-   rQ   )rV   rc  rW   rX   r  r   s         rd   test_euclidean_distances_symr    s     ))


"C)$++Lu+EAAa#gJ%(#HqA#A&I Ixd3??l***r   
batch_size)Nr<   r?  e   c                    t         j                  j                  d      }|j                  d      j	                  t         j
                        }d||dk  <   |j                  d      j	                  t         j
                        }d||dk  <   t        ||      } ||      } ||      }t        |||       }t        j                  t        j                  |d            }t        ||d       y )Nr   r  r  rk  r[   r  r  r   )rL   rM   rN   rO   rP   r~  r   r   sqrtmaximumr-   )r  rc  rf  rW   rX   r[   r  r   s           rd   test_euclidean_distances_upcastr    s     ))


"C)$++BJJ7AAa#gJ(#**2::6AAa#gJQ{HqAqA+AzJI

9a01I Ixd3r   c                 p   t         j                  j                  d      }|j                  d      j	                  t         j
                        }d||dk  <   t        t        |            } ||      }t        |||       }t        j                  t        j                  |d            }t        ||d       y )Nr   r  r  r  r  r   )rL   rM   rN   rO   rP   r~  r   r
   r   r  r  r-   )r  rc  rW   rX   r  r   s         rd   #test_euclidean_distances_upcast_symr    s     ))


"C)$++BJJ7AAa#gJ%(#HqA+AzJI

9a01I Ixd3r   zdtype, eps, rtolg-C6?h㈵>g:0yE>gGz?z failing due to lack of precisiondimi@B c                     t        j                  dg|z  g|       }t        j                  d|z   g|z  g|       }t        ||      }t        ||      }t	        ||d       y )Nr   r   r  r   )rL   r   r   r   r-   )rQ   epsr   r  rX   r[   r   r  s           rd   'test_euclidean_distances_extreme_valuesr    s]      	3%#+e,A
39+#$E2A#Aq)IQ{HIxd3r   r   c                     t         j                  j                  d      }|j                  dd      }|j                  dd      }t	        |||       }t        |||       }t        ||       y )N9  r   r=   )r[   r   )rL   rM   rN   r~   r   r   r-   )r   rW   rX   r[   normal_distancenan_distances         rd   8test_nan_euclidean_distances_equal_to_euclidean_distancer    s\     ))


%C		!QA		!QA)!q'BO*17CLO\2r   rX   r[   c                     t        j                  t              5 }t        | |       d d d        d}|t	        j
                        k(  sJ y # 1 sw Y   &xY w)Nr   zBInput contains infinity or a value too large for dtype('float64').)rn   ro   r   r   strvalue)rX   r[   excinfoexp_msgs       rd   ,test_nan_euclidean_distances_infinite_valuesr    sI     
z	"gQ' 
# SGc'--((((	 
#	"s   AAzX, X_diag, missing_valuerD   r   c                 *   t        j                  d|g|dgg      }t        | |      }t        ||       t        | d|      }t        |dz  |       t        | | |      }t        ||       t        | | j	                         |      }t        ||       y )N        r   missing_valuesTr   r  rD   )rL   r   r   r-   r?   )rX   X_diagmissing_valueexp_distr   dist_sqdist_twodist_two_copys           rd    test_nan_euclidean_distances_2x2r    s      xx#v45H"1]CDHd#%amTGHaK)&q!MJHHh'+AqvvxVMHm,r   r  c                 F   t        j                  | | gddgg      }t        j                  t         j                  t         j                  gt         j                  dgg      }t        ||       }t	        ||       t        ||j                         |       }t	        ||       y )Nr   rI   r  )rL   r   rR   r   r-   r?   )r  rX   r  r   s       rd   )test_nan_euclidean_distances_complete_nanr  /  sz    
=-01a&9:Axx"&&"&&)BFFA;78H"1]CDHd#"1affh}MDHd#r   c           	         t        j                  d| dddg| ddd| gd| | | dgg      }t        j                  | dd| dg| | dddg| | | ddgg      }t        |||       }t        |||       }t        ||j                         t        t        |d d	 |d d	 d
|       dgg       t        t        |d	d |d	d d|       t        j                  d      gg       t        ||       }t        |||       }t        ||j                         |       }t        ||       t        ||       t        ||d
      }t        ||d      }	t        ||	       y )Nr   g      @g      @rl   g      @g      @g      @r  rI   Tr  g      D@rD   Fg      9@r>   )rL   r   r   r.   Tr-   r  r?   )
r  rX   r[   rv  rw  rx  ry  D5D6D7s
             rd   'test_nan_euclidean_distances_not_trivalr  <  s   
-c3/Cc=9-sC	
	A 	CmS9M3S9M=#sC	
	A 
!Am	DB	 Am	DBBDD! bqE1Ra5$}	
 4	45	 aFAaFE-	
 '';
<	=>	 
!=	AB	 Am	DB	 AFFH]	KBBB 
!AD	1B	 AE	2BBr   c                     t        j                  dd| dgd| d| gg      }t        || d      }t        j                  |dk\        sJ t        || d      }t	        |d	       y )
NgzG^g     @@gB@g|ï@T)r  r   r   Fr  )rL   r   r   r  r-   )r  rX   dist_squaredr   s       rd   7test_nan_euclidean_distances_one_feature_match_positiver  q  ss    
 	e]E2mZ?	
	A +	-L 66,!#$$$"1]ERDD#r   c                     t         j                  j                  d      } t        j                  | j	                  d            }t        j
                  ||g      }t        |      }t        |ddgddggd       t        j                  |dk\        sJ t        j                  |dk        sJ t        |t        j                  |         ddg       t        j
                  || g      }t        |      }t        j                  |dk\        sJ t        j                  |dk        sJ t        |ddgddgg       t        j                  | j	                  dd            }t        |      }t        |t        j                  |         dg|j                  d	   z         t        j                  |dk\        sJ t        j                  |dk        sJ y )
Nr  i  r  rW  r  rl   rR  i  r   )rL   rM   rN   r   randr  r   r-   r  diag_indices_fromrU   )rW   r   XAr%  XBrw  rX   s          rd   test_cosine_distancesr    s   
))


%C
sxx}A	Aq6	BAAc
S#J/e<66!s(66!s(Ab**1-.c
;	Ar7	B	"	B66")66")B#sc3Z01 	sxxd#$AAAb**1-.
0BC66!s(66!s(r   c                     d } t         j                  j                  d      }|j                  d      }|j                  d      }t        j                  |D cg c]  }|D cg c]  } | ||       c} c}}      }t        ||      }t        ||       |j                  d      }d}t        j                  t        |      5  t        |       d d d        y c c}w c c}}w # 1 sw Y   y xY w)Nc                 Z   |d   | d   z
  }|d   | d   z
  }t        j                  |dz        dz  t        j                  | d         t        j                  |d         z  t        j                  |dz        dz  z  z   }dt        j                  t        j                  |            z  }|S )Nr   rI   rD   )rL   sincosarcsinr  )r   r   diff_latdiff_lonacs         rd   slow_haversine_distancesz:test_haversine_distances.<locals>.slow_haversine_distances  s    Q4!A$;Q4!A$;FF8a< A%FF1Q4L266!A$<'"&&A*>!*CC
 		"''!*%%r   r   rG   )r  rD   )r  r   z-Haversine distance only valid in 2 dimensionsrz   )
rL   rM   rN   rO   r   r   r-   rn   ro   r   )	r  rW   rX   r[   r   r   rv  rw  err_msgs	            rd   test_haversine_distancesr    s     ))


"C&!A'"A	J1A>Aq,Q2A>J	KB	Q	"BB'"A=G	z	1A 
2	1 ?J 
2	1s$   	C
"C2C
C%C
%C.c                  P    dgdgg} dgdgg}t        | |      }t        |ddg       y rh  )r"   r-   rX   r[   r%  s      rd   test_paired_euclidean_distancesr    6    
qc
A
qc
A"1a(AASz"r   c                  P    dgdgg} dgdgg}t        | |      }t        |ddg       y rh  )r#   r-   r  s      rd   test_paired_manhattan_distancesr    r  r   c                  P    dgdgg} dgdgg}t        | |      }t        |ddg       y )Nr   rI   rD   rH   )r    r-   r  s      rd   test_paired_cosine_distancesr    s6    
qc
A
qc
A1%AASz"r   c                  T   t         j                  j                  d      } | j                  d      }| j                  d      }t	        ||      }d}t        |||      }|j                  t        k(  sJ t        |      D ]t  \  }}t        |      D ]a  \  }}	t        j                  ||	z
  dz  ||	z   z         }
t        j                  ||
z        }t        |||f   |
       t        |||f   |       c v t        |      }t        t        j                  |      d       t        j                  |dkD        sJ t        j                  |t        j                  t        j                  |            z
  dk        sJ | j                  d      j                  t         j                         }| j                  d      j                  t         j                         }t        ||      }|j                  t         j                   k(  sJ | j                  d      j                  t         j"                        }t        ||      }t        j$                  |      j                         sJ |j                  t        k(  sJ dd	gd
dgg}ddgddgg}t        ||      }|d   |d   kD  sJ |d   |d   kD  sJ t'        j(                  t*              5  t        ddgg       d d d        t'        j(                  t*              5  t        ddggddgg       d d d        t'        j(                  t*              5  t        ddggddgg       d d d        t'        j(                  t*              5  t        ddggg dg       d d d        y # 1 sw Y   xY w# 1 sw Y   ~xY w# 1 sw Y   VxY w# 1 sw Y   y xY w)Nr   r;   r  r   r   rD   rI   g333333?gffffff?r   g?rE   )r   rI   )rI   rI   )rI   r   r   )皙?r  g333333?)rL   rM   rN   rO   r   r   rQ   float	enumerater   expr.   r/   r   r  rP   r~  int32isfinitern   ro   r   )rW   rX   r[   K_addr   r   ir   jr   r   chi2_exps               rd   test_chi_square_kernelr    s   
))


"C&!A'"A A&EEAq&A77e!1aLDAqFFAEa<1q5122Dvvedl+HadT2!Q$2	 !  	AArwwqz1%66!a%==66!bggbggaj))A-...&!((4A'"))"**5AAqA77bjj    	'"))"((3AAqA;;q>77e sc1XA
Q#sAAqAT7QtWT7QtW 
z	"aWI 
#	z	"aWIRz* 
#	z	"aVHBxj) 
# 
z	"aVH/0 
#	" 
#	"	"	"	"	" 
#	"s0   M:6N*NN:NNNN'kernelc                     t         j                  j                  d      }|j                  d      } | ||      }t	        ||j
                  d       y )Nr   r;      )rL   rM   rN   rO   r-   r  )r  rW   rX   r   s       rd   test_kernel_symmetryr    sC     ))


"C&!Aq!AAqssBr   c                     t         j                  j                  d      }|j                  d      } ||      } | ||      } | ||      }t	        ||       y Nr   r;   )rL   rM   rN   rO   r-   )r  ri   rW   rX   rr   r   r   s          rd   test_kernel_sparser     sS     ))


"C&!AQHq!A	(	#BArr   c            	         t         j                  j                  d      } | j                  d      }t	        ||      }t        |j                  d d d   |D cg c]  }t        j                  |      dz   c}       y c c}w )Nr   r;      rD   )	rL   rM   rN   rO   r   r-   flatr   norm)rW   rX   r   r   s       rd   test_linear_kernelr  5  sg    
))


"C&!AaAAFF3Q3Kq!Aq!&++a.A"5q!AB!As   A>
c                      t         j                  j                  d      } | j                  d      }t	        ||      }t        |j                  d d d   t        j                  d             y )Nr   r;   r  r<   )rL   rM   rN   rO   r*   r-   r  onesrW   rX   r   s      rd   test_rbf_kernelr  =  sP    
))


"C&!A1aAAFF3Q3K,r   c                     t         j                  j                  d      } | j                  d      }t	        ||      }t        t        j                  |      t        j                  d             t        j                  |dkD        sJ t        j                  |t        j                  t        j                  |            z
  dk        sJ y )Nr   r;   r<   rI   )	rL   rM   rN   rO   r   r-   r   r  r  r  s      rd   test_laplacian_kernelr  E  s    
))


"C&!AAABGGAJ
+ 66!a%==66!bggbggaj))A-...r   zmetric, pairwise_funcr   r   c                    t         j                  j                  d      }|j                  d      }|j                  d      } ||      } ||      } |||d      }t	        |      sJ  |||d      }	t	        |	      rJ t        |j                         |	       t        |||       }
t        |j                         |
       y )Nr   r;   r   F)dense_outputTr|   )rL   rM   rN   rO   r   r-   toarrayr(   )rB   pairwise_funcri   rW   rX   r[   XcsrYcsrr   r   K3s              rd   &test_pairwise_similarity_sparse_outputr  Q  s     ))


"C&!A&!ADD 
tT	6BB<< 
q!$	/B|BJJL"% 
!q	0BBJJL"%r   c                 R   t         j                  j                  d      }|j                  d      }|j                  d      } | |      } | |      }|d f||f|d f||ffD ]E  \  }}t	        ||d      }t        |      }|t        |      }t	        ||d      }	t        ||	       G y )Nr   r;   r   r   r|   r   )rL   rM   rN   rO   r(   r,   r-   )
ri   rW   rX   r[   r  r  X_Y_r   r   s
             rd   test_cosine_similarityr  k  s     ))


"C&!A&!ADDt9q!ftTlT4LAB bBx8r]>2BbBx8B Br   c                      t        j                  t        j                  d      d      } t        | d       \  }}||u sJ t	        | |       y N(   r<   rA  )rL   resizer.  r   r/   )r  
XA_checked
XB_checkeds      rd   test_check_dense_matricesr    sE     
299R=&	)B22t<J
###r:&r   c                     t        j                  t        j                  d      d      } t        j                  t        j                  d      d      }t        | |      \  }}t	        | |       t	        ||       t        j                  t        j                  d      d      }t        | |      \  }}t	        | |       t	        ||       y )Nr  r      r=   rA  )rL   r  r.  r   r/   r   r  r  r  r  s       rd   test_check_XB_returnedr    s     
299R=&	)B	299R=&	)B22r:J
r:&r:&	299R=&	)B0R8J
r:&r:&r   c                     t        j                  t        j                  d      d      } t        j                  t        j                  d      d      }t        j                  t
              5  t        | |       d d d        t        j                  t        j                  d      d      }t        j                  t
              5  t        | |       d d d        y # 1 sw Y   axY w# 1 sw Y   y xY w)N-   )r<   r=  r  r	  $   )r=   r=  )rL   r  r.  rn   ro   r   r   r   r  r  s     rd   test_check_different_dimensionsr    s    	299R=&	)B	299R=&	)B	z	"b"% 
# 
299U#V	,B	z	"B# 
#	"	 
#	" 
#	"s   ,CC%C"%C.c                     t        j                  d      j                  dd      } t        j                  d      j                  dd      }t        j                  t
              5  t        | |       d d d        t        j                  d      j                  dd      } t        j                  d      j                  dd      }t        j                  t
              5  t        | |       d d d        y # 1 sw Y   xY w# 1 sw Y   y xY w)Nr  r=  r<   r  r=   rA  )rL   r.  r/  rn   ro   r   r   r  s     rd   test_check_invalid_dimensionsr    s     
2		q!	$B	2		q!	$B	z	"b"% 
#	2		q!	$B	2		q!	$B	z	"b"% 
#	"	 
#	" 
#	"s   $C2C>2C;>Dc                 R   t         j                  j                  d      }|j                  d      } | |      }|j                  d      } | |      }t	        ||      \  }}t        |      sJ t        ||z
        j                         dk(  sJ t        |      sJ t        ||z
        j                         dk(  sJ t	        ||      \  }}t        |      sJ t        ||z
        j                         dk(  sJ t        |      sJ t        ||z
        j                         dk(  sJ y r  )rL   rM   rN   rO   r   r   r   r   )	ri   rW   r  	XA_sparser  	XB_sparser  r  XA_2_checkeds	            rd   test_check_sparse_arraysr    s,    ))


"C			6	"Bb!I			6	"Bb!I29iHJ
 Jy:%&**,111Jy:%&**,1114Y	JJJy:%&**,111L!!!|j()--/1444r   c                 ~    | j                   }t        |      dkD  rt        d | D              S t        d | D              S )NrI   c              3   2   K   | ]  }t        |        y wr   )tuplify)r  r`   s     rd   r  ztuplify.<locals>.<genexpr>  s     /QcWS\Qs   c              3       K   | ]  }|  y wr   r   )r  rs     rd   r  ztuplify.<locals>.<genexpr>  s     N1Qs   )rU   r   rS   )rX   r:  s     rd   r  r    s8    	A
1vz/Q/// NN""r   c                      t         j                  j                  d      } | j                  d      }t	        |      }| j                  d      }t	        |      }t        ||      \  }}t        ||       t        ||       y r  )rL   rM   rN   rO   r  r   r/   )rW   r  	XA_tuplesr  	XB_tuplesr  r  s          rd   test_check_tuple_inputr     sm    
))


"C			6	"BI			6	"BI29iHJ
y*-y*-r   c                  B   t        j                  t        j                  d      d      j                  t         j                        } t        j                  t        j                  d      d      j                  t         j                        }t        | d       \  }}|j                  t         j                  k(  sJ t        | |      \  }}|j                  t         j                  k(  sJ |j                  t         j                  k(  sJ t        | j                  t              |      \  }}|j                  t        k(  sJ |j                  t        k(  sJ t        | |j                  t                    \  }}|j                  t        k(  sJ |j                  t        k(  sJ y r   )rL   r  r.  rP   r~  r   rQ   r  r
  s       rd   test_check_preserve_typer"    sD   	299R=&	)	0	0	<B	299R=&	)	0	0	<B22t<J
rzz))) 32r:J
rzz)))rzz))) 3299U3CRHJ
u$$$u$$$ 32ryy7GHJ
u$$$u$$$r   r   
seuclideanmahalanobisdist_functionc           
      8   t        d      5  t        j                  j                  d      }|j	                  d      }t        t        ||            }t        j                  t         ||||                   }t        ||       d d d        y # 1 sw Y   y xY w)Nr   )r  r   r  rA   r   )
r   rL   rM   rN   rO   r   r
   r  rS   r-   )r   rB   r%  rW   rX   expected_distr   s          rd   +test_pairwise_distances_data_derived_paramsr(    ss     
s	+ii##A&i("56#:;yy}QvfMNOm, 
,	+	+s   A:BBc                 
   t         j                  j                  d      }|j                  d      }|j                  d      }t	        j
                  t        d|  d      5  t        |||        d d d        y # 1 sw Y   y xY w)Nr   r  z+The '(V|VI)' parameter is required for the z metricrz   rA   )rL   rM   rN   rO   rn   ro   r   r$   )rB   rW   rX   r[   s       rd   1test_pairwise_distances_data_derived_params_errorr*    sq     ))


"C)$A)$A	<&Q
 	1a/	
 
 
s   !A99B)
braycurtiscanberra	chebyshevcorrelationhammingr$  r	   r#  r   r   r   r@   y_is_xzY is Xz
Y is not Xc           	         t         j                  j                  d      }|j                  d      j	                  |d      }i }|r|}t        t        ||             }n|j                  d      j	                  |d      }t        |||       }| dk(  r?dt        j                  t        j                  ||g      ddt         j                  	      i}nb| d
k(  r]dt         j                  j                  t        j                  t        j                  ||g      j                              j                  i}t        ||fd| i|}t!        ||       y )Nr   r;   Fr>   rA   r#  VrI   )r   ddofrQ   r$  VIrB   )rL   rM   rN   rO   rP   r   r
   r   varr  rm   r   invcovr  r$   r-   )	rB   rV   r0  rW   rX   r   r[   r'  r   s	            rd   )test_numeric_pairwise_distances_datatypesr8    s   6 ))


"C&!((E(BAF"56#:;f%,,\,Fa62\!266"))QF"3!!2::VWF}$BIIMM"&&Aq61B1D1D*EFHHIFa<6<V<DD-(r   zX,Y,expected_distance)r  ababc)r  r   rl   )r   r  r   )rl   r   r  r  r9  r  r   rl   c                 >    d }t        | ||      }t        ||       y)z8Check pairwise_distances with lists of strings as input.c                 V    t        j                  t        |       t        |      z
        S r   )rL   r   r   r   s     rd   dummy_string_similarityzLtest_pairwise_dist_custom_metric_for_string.<locals>.dummy_string_similarity]  s    vvc!fs1vo&&r   )rX   r[   rB   N)r$   r-   )rX   r[   expected_distancer=  actual_distances        rd   +test_pairwise_dist_custom_metric_for_stringr@  K  s#    $' )1:QROO%67r   c                      d } t        j                  g dg dg dgt              }t        j                  g dg dg dg      }t        || 	      }t	        ||       y
)zjCheck that pairwise_distances does not convert boolean input to float
    when using a custom metric.
    c                 V    d| |z  j                         | |z  j                         z  z
  S )NrI   )r   )v1v2s     rd   dummy_bool_distzBtest_pairwise_dist_custom_metric_for_bool.<locals>.dummy_bool_disti  s&    BG==?b2g]]_444r   )rI   r   r   r   )rI   r   rI   r   )rI   rI   rI   rI   r   )r  rH         ?)rH   r  rH   )rF  rH   r  )rX   rB   N)rL   r   r   r$   r-   )rE  rX   r>  r?  s       rd   )test_pairwise_dist_custom_metric_for_boolrG  d  sV    
5 	,l;4HA	
 )1_EOO%67r   c                      | t        j                  d            g} | t        j                  d            g} t        dd      d t        ||      D               y )Nr   rD   r   )r   
max_nbytesc              3   N   K   | ]  \  }} t        t              ||        y wr   )r9   r   )r  m1m2s      rd   r  z9test_sparse_manhattan_readonly_dataset.<locals>.<genexpr>  s)      %;TR$#$R,;Ts   #%)rL   r  r8   zip)ri   	matrices1	matrices2s      rd   &test_sparse_manhattan_readonly_datasetrP  {  sU     rwwv/0Irwwv/0I %HA!$ %;>y);T% r   )r@   )r   typesr   numpyrL   r   scipy.sparser   scipy.spatial.distancer   r   r   r	   r
   r   r   ImportErrorrn   sklearnr   sklearn.exceptionsr   sklearn.metrics.pairwiser   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r    r!   r"   r#   r$   r%   r&   r'   r(   r)   r*   r+   sklearn.preprocessingr,   sklearn.utils._testingr-   r.   r/   r0   sklearn.utils.fixesr1   r2   r3   r4   r5   r6   r7   sklearn.utils.parallelr8   r9   re   markparametrizeru   r   r   r   r   r.  rP   _minkowski_kwds_wminkowski_kwdsr   paramskipifrm   r~  r   r   r   r   r   r   itemsr   r   r  r  r  r   r1  r   rq   rD  rN  rZ  r\  rb  r   __name__ri  r{  r  r  r  r  r  r  xfailr  r  infr  r  rR   r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r   r"  r(  r*  r8  r@  rG  rP  )r)  r+  	containers   000rd   <module>rh     s       ! ?1  " 4       > ,    5L^ .9.9.9.9>< : : : :><B #=>: ?:<2 "46F!GH% I%:F "		!Q..xe.D1M"1a//u/EAN  	["-	

 		

 	++$$mG44T % 		
 	++$$mG44T % 		
 
<(A7	.#?? #H 2::rzz3"?@ AI#JI T .9 :	
>&
7 )?)9)?)?)AB.9& : C&*( .9.9vA : :vAr7"
4  $+ -,N )7I, - -N )7 	

 -()( ) 5(	
 :0	

 
!*.QRA	
  H	
 ,<	
->?>7  #EF? G? #EF7 G7 ! !H XXJ		HIY''HH  
 XXJ		HIY''HH  
%% XXJ		HIY''HH  
%
%@ tUm4 5 ED XXJ		HIY''HH  
 XXJ		HIY''HH  
++* XXJ		HIY''HH  
+
+$ '89XXJ		HIY''HH  
 XXJ		HIY''HH  
4 :4( '89XXJ		HIY''HH  
4 :4" 	T4 JJ++##+M#N		
 G-	4 .	4 T5M23 33 xrxx"&&!61rvvg,8PQRxrxx"&&!61rvvg,8PRVWX) Y S) 	Aq6Aq6"	#WRWWQZ8	Aq6Arvv;'	('"''!*bff=	BFFA;BFF,	-rvvrvv>	BFFA;,	-wrwwqz266B	Arvv;BFF,	-wrwwqz266B	Aq6Aq6"	#WRWWQZ4	Aq6Ar7#	$gbggaj"5	B7QG$	%rvvr2	B7RG$	%wrwwqz26	Ar7QG$	%wrwwqz26--  2662,7	$ 8	$ 2662,71 81h 2662,7 8(<6###31l 
 
  
 .9 :
C-	/ +< => .9& :	
&* .9  : ('' 	$& .95 :5,#	.%0 Aq6*L-#@A(*DE
- B +

- L-#@A0 B0 " D%=x6NO) P#$)>  o?	
 $K3Z#sc3Z0	
888. .9 :U3  ? ?>?hH I
 I Ip I
 I4 I0 I
 I4 IsS   x= y)y?yyy#y(y-&y2y7y<z=yy