
    {Kgz                        d Z ddlmZ ddlZddlmZ ddlmZ ddl	m
Z
mZ ddlmZ dd	lmZ dd
lmZ ddlmZ ddlmZ ddlmZmZmZ ddlmZmZmZ ddlmZ ddl m!Z!m"Z"m#Z#m$Z$m%Z% ddl&m'Z' ddl(m)Z)m*Z* ddl+m,Z,m-Z- dgZ.d Z/d Z0	 d-dZ1 e% e!ddg       e!ddg       e!ddg      gddgde"e2gddgddgddg e$h d      ge3g e#e"ddd !      g e$h d"      g e$h d#      gd$d%&      dddd'd(d)d'd*d+d,       Z4y).zBPartial dependence plots for regression and classification models.    )IterableN)sparse)
mquantiles   )is_classifieris_regressor)RandomForestRegressor)BaseGradientBoosting)BaseHistGradientBoosting)NotFittedError)DecisionTreeRegressor)Bunch_safe_indexingcheck_array)_determine_key_type_get_column_indices_safe_assign)check_matplotlib_support)
HasMethodsIntegralInterval
StrOptionsvalidate_params)	cartesian)_check_sample_weightcheck_is_fitted   )_check_feature_names_get_feature_indexpartial_dependencec                    t        |t              rt        |      dk7  rt        d      t	        d |D              st        d      |d   |d   k\  rt        d      |dk  rt        d      g }t        |      D ]  \  }}	 t        j                  t        | |d	            }|s|j                  d   |k  r|}	n`t        t        | |d	      |d      }
t        j                  |
d   |
d         rt        d      t        j                  |
d   |
d   |d      }	|j                  |	        t        |      |fS # t        $ r}t        d
| d      |d}~ww xY w)a   Generate a grid of points based on the percentiles of X.

    The grid is a cartesian product between the columns of ``values``. The
    ith column of ``values`` consists in ``grid_resolution`` equally-spaced
    points between the percentiles of the jth column of X.

    If ``grid_resolution`` is bigger than the number of unique values in the
    j-th column of X or if the feature is a categorical feature (by inspecting
    `is_categorical`) , then those unique values will be used instead.

    Parameters
    ----------
    X : array-like of shape (n_samples, n_target_features)
        The data.

    percentiles : tuple of float
        The percentiles which are used to construct the extreme values of
        the grid. Must be in [0, 1].

    is_categorical : list of bool
        For each feature, tells whether it is categorical or not. If a feature
        is categorical, then the values used will be the unique ones
        (i.e. categories) instead of the percentiles.

    grid_resolution : int
        The number of equally spaced points to be placed on the grid for each
        feature.

    Returns
    -------
    grid : ndarray of shape (n_points, n_target_features)
        A value for each feature at each point in the grid. ``n_points`` is
        always ``<= grid_resolution ** X.shape[1]``.

    values : list of 1d ndarrays
        The values with which the grid has been created. The size of each
        array ``values[j]`` is either ``grid_resolution``, or the number of
        unique values in ``X[:, j]``, whichever is smaller.
    r   z/'percentiles' must be a sequence of 2 elements.c              3   <   K   | ]  }d |cxk  xr dk  nc   yw)r   r   N ).0xs     j/home/alanp/www/video.onchill/myenv/lib/python3.12/site-packages/sklearn/inspection/_partial_dependence.py	<genexpr>z_grid_from_X.<locals>.<genexpr>S   s     0KqqA{{{Ks   z''percentiles' values must be in [0, 1].r   r   z9percentiles[0] must be strictly less than percentiles[1].z2'grid_resolution' must be strictly greater than 1.axiszThe column #z contains mixed data types. Finding unique categories fail due to sorting. It usually means that the column contains `np.nan` values together with `str` categories. Such use case is not yet supported in scikit-learn.N)probr)   ztpercentiles are too close to each other, unable to build the grid. Please choose percentiles that are further apart.T)numendpoint)
isinstancer   len
ValueErrorall	enumeratenpuniquer   	TypeErrorshaper   allcloselinspaceappendr   )Xpercentilesis_categoricalgrid_resolutionvaluesfeatureis_catuniquesexcr)   emp_percentiless              r&   _grid_from_XrC   )   s   P k8,K0@A0EJKK0K00BCC1~Q'TUU!MNNF %^4
	iiq' BCG W]]1%7 D )q'21O {{?1-q/AB . 
 ;;""#	D 	dE 5H Vf$$C  	 wi (= =
 	s   !D99	EEEc                 l    | j                  ||      }|j                  dk(  r|j                  dd      }|S )a}	  Calculate partial dependence via the recursion method.

    The recursion method is in particular enabled for tree-based estimators.

    For each `grid` value, a weighted tree traversal is performed: if a split node
    involves an input feature of interest, the corresponding left or right branch
    is followed; otherwise both branches are followed, each branch being weighted
    by the fraction of training samples that entered that branch. Finally, the
    partial dependence is given by a weighted average of all the visited leaves
    values.

    This method is more efficient in terms of speed than the `'brute'` method
    (:func:`~sklearn.inspection._partial_dependence._partial_dependence_brute`).
    However, here, the partial dependence computation is done explicitly with the
    `X` used during training of `est`.

    Parameters
    ----------
    est : BaseEstimator
        A fitted estimator object implementing :term:`predict` or
        :term:`decision_function`. Multioutput-multiclass classifiers are not
        supported. Note that `'recursion'` is only supported for some tree-based
        estimators (namely
        :class:`~sklearn.ensemble.GradientBoostingClassifier`,
        :class:`~sklearn.ensemble.GradientBoostingRegressor`,
        :class:`~sklearn.ensemble.HistGradientBoostingClassifier`,
        :class:`~sklearn.ensemble.HistGradientBoostingRegressor`,
        :class:`~sklearn.tree.DecisionTreeRegressor`,
        :class:`~sklearn.ensemble.RandomForestRegressor`,
        ).

    grid : array-like of shape (n_points, n_target_features)
        The grid of feature values for which the partial dependence is calculated.
        Note that `n_points` is the number of points in the grid and `n_target_features`
        is the number of features you are doing partial dependence at.

    features : array-like of {int, str}
        The feature (e.g. `[0]`) or pair of interacting features
        (e.g. `[(0, 1)]`) for which the partial dependency should be computed.

    Returns
    -------
    averaged_predictions : array-like of shape (n_targets, n_points)
        The averaged predictions for the given `grid` of features values.
        Note that `n_targets` is the number of targets (e.g. 1 for binary
        classification, `n_tasks` for multi-output regression, and `n_classes` for
        multiclass classification) and `n_points` is the number of points in the `grid`.
    r   )%_compute_partial_dependence_recursionndimreshape)estgridfeaturesaveraged_predictionss       r&   _partial_dependence_recursionrM      sA    b DDT8T  A%  4;;ArB    c                 P   g }g }t        |       r| j                  }n\t        | dd      }	t        | dd      }
|dk(  r|	xs |
}n	|dk(  r|	n|
}|+|dk(  rt        d      |dk(  rt        d      t        d      |j	                         }|D ]g  }t        |      D ]  \  }}t        |||   |        	  ||      }|j                  |       |j                  t        j                  |d	|
             i |j                  d	   }t        j                  |      j                  }t        |       r"|j                  dk(  r|j                  |d      }n4t!        |       r)|j                  d	   dk(  r|d   }|j                  |d      }t        j                  |      j                  }t        |       r%|j                  dk(  r|j                  dd      }||fS t!        |       r)|j                  d	   dk(  r|d   }|j                  dd      }||fS # t        $ r}t        d      |d}~ww xY w)a&  Calculate partial dependence via the brute force method.

    The brute method explicitly averages the predictions of an estimator over a
    grid of feature values.

    For each `grid` value, all the samples from `X` have their variables of
    interest replaced by that specific `grid` value. The predictions are then made
    and averaged across the samples.

    This method is slower than the `'recursion'`
    (:func:`~sklearn.inspection._partial_dependence._partial_dependence_recursion`)
    version for estimators with this second option. However, with the `'brute'`
    force method, the average will be done with the given `X` and not the `X`
    used during training, as it is done in the `'recursion'` version. Therefore
    the average can always accept `sample_weight` (even when the estimator was
    fitted without).

    Parameters
    ----------
    est : BaseEstimator
        A fitted estimator object implementing :term:`predict`,
        :term:`predict_proba`, or :term:`decision_function`.
        Multioutput-multiclass classifiers are not supported.

    grid : array-like of shape (n_points, n_target_features)
        The grid of feature values for which the partial dependence is calculated.
        Note that `n_points` is the number of points in the grid and `n_target_features`
        is the number of features you are doing partial dependence at.

    features : array-like of {int, str}
        The feature (e.g. `[0]`) or pair of interacting features
        (e.g. `[(0, 1)]`) for which the partial dependency should be computed.

    X : array-like of shape (n_samples, n_features)
        `X` is used to generate values for the complement features. That is, for
        each value in `grid`, the method will average the prediction of each
        sample from `X` having that grid value for `features`.

    response_method : {'auto', 'predict_proba', 'decision_function'},             default='auto'
        Specifies whether to use :term:`predict_proba` or
        :term:`decision_function` as the target response. For regressors
        this parameter is ignored and the response is always the output of
        :term:`predict`. By default, :term:`predict_proba` is tried first
        and we revert to :term:`decision_function` if it doesn't exist.

    sample_weight : array-like of shape (n_samples,), default=None
        Sample weights are used to calculate weighted means when averaging the
        model output. If `None`, then samples are equally weighted. Note that
        `sample_weight` does not change the individual predictions.

    Returns
    -------
    averaged_predictions : array-like of shape (n_targets, n_points)
        The averaged predictions for the given `grid` of features values.
        Note that `n_targets` is the number of targets (e.g. 1 for binary
        classification, `n_tasks` for multi-output regression, and `n_classes` for
        multiclass classification) and `n_points` is the number of points in the `grid`.

    predictions : array-like
        The predictions for the given `grid` of features values over the samples
        from `X`. For non-multioutput regression and binary classification the
        shape is `(n_instances, n_points)` and for multi-output regression and
        multiclass classification the shape is `(n_targets, n_instances, n_points)`,
        where `n_targets` is the number of targets (`n_tasks` for multi-output
        regression, and `n_classes` for multiclass classification), `n_instances`
        is the number of instances in `X`, and `n_points` is the number of points
        in the `grid`.
    predict_probaNdecision_functionautozCThe estimator has no predict_proba and no decision_function method.z*The estimator has no predict_proba method.z.The estimator has no decision_function method.)column_indexerr   )r)   weightsz0'estimator' parameter must be a fitted estimatorr   rE   r   )r   predictgetattrr/   copyr1   r   r8   r2   averager   r5   arrayTrG   rH   r   )rI   rJ   rK   r9   response_methodsample_weightpredictionsrL   prediction_methodrP   rQ   X_eval
new_valuesivariableprede	n_sampless                     r&   _partial_dependence_bruterf      sa   P K CKK_d;#C)<dCf$ - B1B #o5 & 
 $&( 0  !O3 !MNN !QRRVVXF
$X.KAxAxH /	X %V,Dt$ ''

4a(WX & 
I ((;'))KC[--2!)))R8	s	 1 1! 4 9 "!n!)))R8 88$89;;C166!;3;;ArB  ,, 
s	 4 : :1 = B  4A63;;ArB,,G  	XOPVWW	Xs   3A H	H%H  H%fitrU   rP   rQ   z
array-likezsparse matrix>   rR   rP   rQ   left)closed>   rR   brute	recursion>   bothrX   
individual)	estimatorr9   rK   r\   categorical_featuresfeature_namesr[   r:   r<   methodkindT)prefer_skip_nested_validationrR   )g?gffffff?d   rX   )r\   ro   rp   r[   r:   r<   rq   rr   c                v   t        |        t        |       st        |       st        d      t        |       r2t	        | j
                  d   t        j                        rt        d      t        |d      s't        j                  |      st        |dt              }t        |       r|dk7  rt        d      |
d	k7  r|	d
k(  rt        d      d}	|	d
k(  r|t        d      |	dk(  rD|d}	n?t	        | t              r| j                  d
}	n t	        | t        t         t"        f      rd
}	nd}	|	d
k(  rqt	        | t        t        t         t"        f      s+d}t        dj%                  dj'                  |                  |dk(  rd}|dk7  rt        dj%                  |            |t)        ||      }t+        |d      dk(  rSt        j,                  t        j.                  |d            r*t        dj%                  |j0                  d   dz
              t        j2                  t5        ||      t        j6                  d      j9                         }t;        ||      }|j0                  d   }|dgt=        |      z  }nt        j2                  |      }|j>                  j@                  dk(  r>|jB                  |k7  rt        d|jB                   d| d      |D cg c]  }||   	 }}n]|j>                  j@                  dv r,|D cg c]  }tE        ||       }}|D cg c]  }||v  }}nt        d |j>                   d!      tG        tI        ||d"      |||      \  }}|	dk(  rPtK        | |||||      \  }} |jL                  d#|j0                  d   g|D cg c]  }|j0                  d    c} }ntO        | ||      } |jL                  d#g|D cg c]  }|j0                  d    c} }tQ        |$      }|
d	k(  r||d	<   |S |
d%k(  r|d%<   |S ||d	<   |d%<   |S c c}w c c}w c c}w c c}w c c}w )&a   Partial dependence of ``features``.

    Partial dependence of a feature (or a set of features) corresponds to
    the average response of an estimator for each possible value of the
    feature.

    Read more in the :ref:`User Guide <partial_dependence>`.

    .. warning::

        For :class:`~sklearn.ensemble.GradientBoostingClassifier` and
        :class:`~sklearn.ensemble.GradientBoostingRegressor`, the
        `'recursion'` method (used by default) will not account for the `init`
        predictor of the boosting process. In practice, this will produce
        the same values as `'brute'` up to a constant offset in the target
        response, provided that `init` is a constant estimator (which is the
        default). However, if `init` is not a constant estimator, the
        partial dependence values are incorrect for `'recursion'` because the
        offset will be sample-dependent. It is preferable to use the `'brute'`
        method. Note that this only applies to
        :class:`~sklearn.ensemble.GradientBoostingClassifier` and
        :class:`~sklearn.ensemble.GradientBoostingRegressor`, not to
        :class:`~sklearn.ensemble.HistGradientBoostingClassifier` and
        :class:`~sklearn.ensemble.HistGradientBoostingRegressor`.

    Parameters
    ----------
    estimator : BaseEstimator
        A fitted estimator object implementing :term:`predict`,
        :term:`predict_proba`, or :term:`decision_function`.
        Multioutput-multiclass classifiers are not supported.

    X : {array-like, sparse matrix or dataframe} of shape (n_samples, n_features)
        ``X`` is used to generate a grid of values for the target
        ``features`` (where the partial dependence will be evaluated), and
        also to generate values for the complement features when the
        `method` is 'brute'.

    features : array-like of {int, str, bool} or int or str
        The feature (e.g. `[0]`) or pair of interacting features
        (e.g. `[(0, 1)]`) for which the partial dependency should be computed.

    sample_weight : array-like of shape (n_samples,), default=None
        Sample weights are used to calculate weighted means when averaging the
        model output. If `None`, then samples are equally weighted. If
        `sample_weight` is not `None`, then `method` will be set to `'brute'`.
        Note that `sample_weight` is ignored for `kind='individual'`.

        .. versionadded:: 1.3

    categorical_features : array-like of shape (n_features,) or shape             (n_categorical_features,), dtype={bool, int, str}, default=None
        Indicates the categorical features.

        - `None`: no feature will be considered categorical;
        - boolean array-like: boolean mask of shape `(n_features,)`
            indicating which features are categorical. Thus, this array has
            the same shape has `X.shape[1]`;
        - integer or string array-like: integer indices or strings
            indicating categorical features.

        .. versionadded:: 1.2

    feature_names : array-like of shape (n_features,), dtype=str, default=None
        Name of each feature; `feature_names[i]` holds the name of the feature
        with index `i`.
        By default, the name of the feature corresponds to their numerical
        index for NumPy array and their column name for pandas dataframe.

        .. versionadded:: 1.2

    response_method : {'auto', 'predict_proba', 'decision_function'},             default='auto'
        Specifies whether to use :term:`predict_proba` or
        :term:`decision_function` as the target response. For regressors
        this parameter is ignored and the response is always the output of
        :term:`predict`. By default, :term:`predict_proba` is tried first
        and we revert to :term:`decision_function` if it doesn't exist. If
        ``method`` is 'recursion', the response is always the output of
        :term:`decision_function`.

    percentiles : tuple of float, default=(0.05, 0.95)
        The lower and upper percentile used to create the extreme values
        for the grid. Must be in [0, 1].

    grid_resolution : int, default=100
        The number of equally spaced points on the grid, for each target
        feature.

    method : {'auto', 'recursion', 'brute'}, default='auto'
        The method used to calculate the averaged predictions:

        - `'recursion'` is only supported for some tree-based estimators
          (namely
          :class:`~sklearn.ensemble.GradientBoostingClassifier`,
          :class:`~sklearn.ensemble.GradientBoostingRegressor`,
          :class:`~sklearn.ensemble.HistGradientBoostingClassifier`,
          :class:`~sklearn.ensemble.HistGradientBoostingRegressor`,
          :class:`~sklearn.tree.DecisionTreeRegressor`,
          :class:`~sklearn.ensemble.RandomForestRegressor`,
          ) when `kind='average'`.
          This is more efficient in terms of speed.
          With this method, the target response of a
          classifier is always the decision function, not the predicted
          probabilities. Since the `'recursion'` method implicitly computes
          the average of the Individual Conditional Expectation (ICE) by
          design, it is not compatible with ICE and thus `kind` must be
          `'average'`.

        - `'brute'` is supported for any estimator, but is more
          computationally intensive.

        - `'auto'`: the `'recursion'` is used for estimators that support it,
          and `'brute'` is used otherwise. If `sample_weight` is not `None`,
          then `'brute'` is used regardless of the estimator.

        Please see :ref:`this note <pdp_method_differences>` for
        differences between the `'brute'` and `'recursion'` method.

    kind : {'average', 'individual', 'both'}, default='average'
        Whether to return the partial dependence averaged across all the
        samples in the dataset or one value per sample or both.
        See Returns below.

        Note that the fast `method='recursion'` option is only available for
        `kind='average'` and `sample_weights=None`. Computing individual
        dependencies and doing weighted averages requires using the slower
        `method='brute'`.

        .. versionadded:: 0.24

    Returns
    -------
    predictions : :class:`~sklearn.utils.Bunch`
        Dictionary-like object, with the following attributes.

        individual : ndarray of shape (n_outputs, n_instances,                 len(values[0]), len(values[1]), ...)
            The predictions for all the points in the grid for all
            samples in X. This is also known as Individual
            Conditional Expectation (ICE).
            Only available when `kind='individual'` or `kind='both'`.

        average : ndarray of shape (n_outputs, len(values[0]),                 len(values[1]), ...)
            The predictions for all the points in the grid, averaged
            over all samples in X (or over the training data if
            `method` is 'recursion').
            Only available when `kind='average'` or `kind='both'`.

        grid_values : seq of 1d ndarrays
            The values with which the grid has been created. The generated
            grid is a cartesian product of the arrays in `grid_values` where
            `len(grid_values) == len(features)`. The size of each array
            `grid_values[j]` is either `grid_resolution`, or the number of
            unique values in `X[:, j]`, whichever is smaller.

            .. versionadded:: 1.3

        `n_outputs` corresponds to the number of classes in a multi-class
        setting, or to the number of tasks for multi-output regression.
        For classical regression and binary classification `n_outputs==1`.
        `n_values_feature_j` corresponds to the size `grid_values[j]`.

    See Also
    --------
    PartialDependenceDisplay.from_estimator : Plot Partial Dependence.
    PartialDependenceDisplay : Partial Dependence visualization.

    Examples
    --------
    >>> X = [[0, 0, 2], [1, 0, 0]]
    >>> y = [0, 1]
    >>> from sklearn.ensemble import GradientBoostingClassifier
    >>> gb = GradientBoostingClassifier(random_state=0).fit(X, y)
    >>> partial_dependence(gb, features=[0], X=X, percentiles=(0, 1),
    ...                    grid_resolution=2) # doctest: +SKIP
    (array([[-4.52...,  4.52...]]), [array([ 0.,  1.])])
    z5'estimator' must be a fitted regressor or classifier.r   z3Multiclass-multioutput estimators are not supported	__array__z	allow-nan)force_all_finitedtyperR   zKThe response_method parameter is ignored for regressors and must be 'auto'.rX   rk   zCThe 'recursion' method only applies when 'kind' is set to 'average'rj   zFThe 'recursion' method can only be applied when sample_weight is None.)GradientBoostingClassifierGradientBoostingRegressorHistGradientBoostingClassifierHistGradientBoostingRegressorr|   r   r	   z[Only the following estimators support the 'recursion' method: {}. Try using method='brute'.z, rQ   zUWith the 'recursion' method, the response_method must be 'decision_function'. Got {}.F)accept_sliceintzall features must be in [0, {}]r   C)rx   orderbzeWhen `categorical_features` is a boolean array-like, the array should be of shape (n_features,). Got z elements while `X` contains z
 features.)ra   OU)rp   zXExpected `categorical_features` to be an array-like of boolean, integer, or string. Got z	 instead.r(   rE   )grid_valuesrm   ))r   r   r   r/   r-   classes_r2   ndarrayhasattrr   issparser   objectr
   initr   r   r	   formatjoinr   r   anylessr5   asarrayr   intpravelr   r.   rx   rr   sizer   rC   r   rf   rH   rM   r   )rn   r9   rK   r\   ro   rp   r[   r:   r<   rq   rr   supported_classes_recursionfeatures_indices
n_featuresr;   idxcatcategorical_features_idxrJ   r=   rL   r]   valpdp_resultss                           r&   r    r    [  s   j I)$Y(?PQQYJy/A/A!/Dbjj$QNOO A{#vq'9KvFI?f#<
 	

 y[ U  !:T
 	
 $F	#78Y^^=S F%'<>ST
 !FF$(%%	
+' 88>II9:9  f$1O11//5vo/F 
  ,]A>8%8EA 66"''(A&'>EEaggajSTnUVVzzAx(seg  )M:MJ#3'7#88!zz*>?%%**c1#((J6 G+0011N!l*.  DTTCSC237CSNT!'',,? 0(/C #3mD/ % (
 <L;KC//;K   ,,@,F,F+GyR 
  q*3	LD& ,Et-q/=-
)k *k))

6<=fsciilf=
  =t- 
 8/77
&,-fsciilf- F+Ky!5I  
	$/L!
  "6I$/L!k U(0 > .s   P"P'P,P1
P6
)N)5__doc__collections.abcr   numpyr2   scipyr   scipy.stats.mstatsr   baser   r   ensembler	   ensemble._gbr
   2ensemble._hist_gradient_boosting.gradient_boostingr   
exceptionsr   treer   utilsr   r   r   utils._indexingr   r   r   utils._optional_dependenciesr   utils._param_validationr   r   r   r   r   utils.extmathr   utils.validationr   r   	_pd_utilsr   r   __all__rC   rM   rf   strtupler    r#   rN   r&   <module>r      sJ   H %   ) . , / ( ( 6 6 T T C  & D ? 
Y%x7 v <@Y-x  y)*/0234

 O,!8S1&-!-t 4&-&'UVWw$Xq$vFG<=>=>?" #'%2 	b)(brN   