
    {KgR(                         d Z ddlmZmZ ddlmZ ddlZddlm	Z	 ddl
mZmZmZmZmZ ddlmZmZ dd	lmZ dd
lmZ ddlmZ ddlmZ 	 ddZddZ G d deee      Zd Z G d deee      Zy)z)Base class for ensemble-based estimators.    )ABCMetaabstractmethod)ListN)effective_n_jobs   )BaseEstimatorMetaEstimatorMixincloneis_classifieris_regressor)Bunchcheck_random_state
_safe_tags)_print_elapsed_time)_routing_enabled)_BaseCompositionc                    t               s3d|v r/	 t        ||      5  | j                  |||d          ddd       | S t        ||      5   | j                  ||fi | ddd       | S # 1 sw Y   6xY w# t        $ rB}dt	        |      v r/t        dj                  | j                  j                              | d}~ww xY w# 1 sw Y   | S xY w)z7Private function used to fit an estimator within a job.sample_weight)r   Nz+unexpected keyword argument 'sample_weight'z8Underlying estimator {} does not support sample weights.)r   r   fit	TypeErrorstrformat	__class____name__)	estimatorXy
fit_paramsmessage_clsnamemessageexcs          Z/home/alanp/www/video.onchill/myenv/lib/python3.12/site-packages/sklearn/ensemble/_base.py_fit_single_estimatorr$      s     /Z"?
	$_g>a*_2MN ?  !':IMM!Q-*- ; ?> 	<CHNUU!++44 	
 	 ;s9   A5 A)A5 
C)A2.A5 5	C >=B;;C Cc                 4   t        |      }i }t        | j                  d            D ]X  }|dk(  s|j                  d      s|j	                  t        j                  t
        j                        j                        ||<   Z |r | j                  di | yy)a  Set fixed random_state parameters for an estimator.

    Finds all parameters ending ``random_state`` and sets them to integers
    derived from ``random_state``.

    Parameters
    ----------
    estimator : estimator supporting get/set_params
        Estimator with potential randomness managed by random_state
        parameters.

    random_state : int, RandomState instance or None, default=None
        Pseudo-random number generator to control the generation of the random
        integers. Pass an int for reproducible output across multiple function
        calls.
        See :term:`Glossary <random_state>`.

    Notes
    -----
    This does not necessarily set *all* ``random_state`` attributes that
    control an estimator's randomness, only those accessible through
    ``estimator.get_params()``.  ``random_state``s not controlled include
    those belonging to:

        * cross-validation splitters
        * ``scipy.stats`` rvs
    Tdeeprandom_state__random_stateN )
r   sorted
get_paramsendswithrandintnpiinfoint32max
set_params)r   r(   to_setkeys       r#   _set_random_statesr6   ,   s    8 &l3LFi***56. CLL1A$B&..rxx/A/E/EFF3K 7 	&v&     c                   n    e Zd ZU dZg Zee   ed<   e	 dd e	       dd       Z
ddZddZd	 Zd
 Zd Zy)BaseEnsemblea  Base class for all ensemble classes.

    Warning: This class should not be used directly. Use derived classes
    instead.

    Parameters
    ----------
    estimator : object
        The base estimator from which the ensemble is built.

    n_estimators : int, default=10
        The number of estimators in the ensemble.

    estimator_params : list of str, default=tuple()
        The list of attributes to use as parameters when instantiating a
        new base estimator. If none are given, default parameters are used.

    Attributes
    ----------
    estimator_ : estimator
        The base estimator from which the ensemble is grown.

    estimators_ : list of estimators
        The collection of fitted base estimators.
    _required_parametersN
   )n_estimatorsestimator_paramsc                .    || _         || _        || _        y N)r   r<   r=   )selfr   r<   r=   s       r#   __init__zBaseEnsemble.__init__p   s     #( 0r7   c                 N    | j                   | j                   | _        y|| _        y)zMCheck the base estimator.

        Sets the `estimator_` attributes.
        N)r   
estimator_)r@   defaults     r#   _validate_estimatorz BaseEnsemble._validate_estimator   s     
 >>%"nnDO%DOr7   c                     t        | j                        } |j                  di | j                  D ci c]  }|t	        | |       c} |t        ||       |r| j                  j                  |       |S c c}w )zMake and configure a copy of the `estimator_` attribute.

        Warning: This method should be used to properly instantiate new
        sub-estimators.
        r*   )r
   rC   r3   r=   getattrr6   estimators_append)r@   rI   r(   r   ps        r#   _make_estimatorzBaseEnsemble._make_estimator   s{     $//*		TT=R=RS=R74#3 3=RST#y,7##I.  Ts   A8c                 ,    t        | j                        S )z0Return the number of estimators in the ensemble.)lenrH   r@   s    r#   __len__zBaseEnsemble.__len__   s    4##$$r7   c                      | j                   |   S )z.Return the index'th estimator in the ensemble.)rH   )r@   indexs     r#   __getitem__zBaseEnsemble.__getitem__   s    &&r7   c                 ,    t        | j                        S )z0Return iterator over estimators in the ensemble.)iterrH   rN   s    r#   __iter__zBaseEnsemble.__iter__   s    D$$%%r7   r?   )TN)r   
__module____qualname____doc__r:   r   r   __annotations__r   tuplerA   rE   rK   rO   rR   rU   r*   r7   r#   r9   r9   R   sW    6 ')$s)( 
1 
1 
1 &"%'&r7   r9   )	metaclassc                     t        t        |      |       }t        j                  || |z  t              }|d| |z  xxx dz  ccc t        j
                  |      }||j                         dg|j                         z   fS )z;Private function used to partition estimators between jobs.)dtypeN   r   )minr   r/   fullintcumsumtolist)r<   n_jobsn_estimators_per_jobstartss       r#   _partition_estimatorsrg      s{     !&)<8F 776<6+AM0<&01Q61YY+,F'..01#2GGGr7   c                   `     e Zd ZdZdgZed        Zed        Zd Z	 fdZ
d	 fd	Zd Z xZS )
_BaseHeterogeneousEnsemblea  Base class for heterogeneous ensemble of learners.

    Parameters
    ----------
    estimators : list of (str, estimator) tuples
        The ensemble of estimators to use in the ensemble. Each element of the
        list is defined as a tuple of string (i.e. name of the estimator) and
        an estimator instance. An estimator can be set to `'drop'` using
        `set_params`.

    Attributes
    ----------
    estimators_ : list of estimators
        The elements of the estimators parameter, having been fitted on the
        training data. If an estimator has been set to `'drop'`, it will not
        appear in `estimators_`.
    
estimatorsc                 >    t        di t        | j                        S )zDictionary to access any fitted sub-estimators by name.

        Returns
        -------
        :class:`~sklearn.utils.Bunch`
        r*   )r   dictrj   rN   s    r#   named_estimatorsz+_BaseHeterogeneousEnsemble.named_estimators   s     -tDOO,--r7   c                     || _         y r?   rj   )r@   rj   s     r#   rA   z#_BaseHeterogeneousEnsemble.__init__   s	    $r7   c           	         t        | j                        dk(  rt        d      t        | j                   \  }}| j	                  |       t        d |D              }|st        d      t        |       rt        nt        }|D ]L  }|dk7  s	 ||      rt        dj                  |j                  j                  |j                  dd               ||fS )Nr   zfInvalid 'estimators' attribute, 'estimators' should be a non-empty list of (string, estimator) tuples.c              3   &   K   | ]	  }|d k7    yw)dropNr*   .0ests     r#   	<genexpr>zB_BaseHeterogeneousEnsemble._validate_estimators.<locals>.<genexpr>   s     @ZcC6MZs   zHAll estimators are dropped. At least one is required to be an estimator.rr   z The estimator {} should be a {}.   )rM   rj   
ValueErrorzip_validate_namesanyr   r   r   r   r   )r@   namesrj   has_estimatoris_estimator_typeru   s         r#   _validate_estimatorsz/_BaseHeterogeneousEnsemble._validate_estimators   s    t1$@   1zU#@Z@@& 
 .;4-@MlCf}%6s%; 6==..0A0J0J120N   j  r7   c                 &    t        |   di | | S )a  
        Set the parameters of an estimator from the ensemble.

        Valid parameter keys can be listed with `get_params()`. Note that you
        can directly set the parameters of the estimators contained in
        `estimators`.

        Parameters
        ----------
        **params : keyword arguments
            Specific parameters using e.g.
            `set_params(parameter_name=new_value)`. In addition, to setting the
            parameters of the estimator, the individual estimator of the
            estimators can also be set, or can be removed by setting them to
            'drop'.

        Returns
        -------
        self : object
            Estimator instance.
        ro   )super_set_params)r@   paramsr   s     r#   r3   z%_BaseHeterogeneousEnsemble.set_params   s    , 	3F3r7   c                 &    t         |   d|      S )a<  
        Get the parameters of an estimator from the ensemble.

        Returns the parameters given in the constructor as well as the
        estimators contained within the `estimators` parameter.

        Parameters
        ----------
        deep : bool, default=True
            Setting it to True gets the various estimators and the parameters
            of the estimators as well.

        Returns
        -------
        params : dict
            Parameter and estimator names mapped to their values or parameter
            names mapped to their values.
        rj   r&   )r   _get_params)r@   r'   r   s     r#   r,   z%_BaseHeterogeneousEnsemble.get_params  s    & w"<d";;r7   c                 h    	 t        d | j                  D              }g |dS # t        $ r d}Y w xY w)Nc              3   R   K   | ]  }|d    dk7  rt        |d          d   nd ! yw)r^   rr   	allow_nanTNr   rs   s     r#   rv   z8_BaseHeterogeneousEnsemble._more_tags.<locals>.<genexpr>(  s6      *C 47q6V3C
3q6";/M*s   %'F)preserves_dtyper   )allrj   	Exception)r@   r   s     r#   
_more_tagsz%_BaseHeterogeneousEnsemble._more_tags&  sG    		 ?? I $&I>>  	 I		s   # 11)T)r   rV   rW   rX   r:   propertyrm   r   rA   r   r3   r,   r   __classcell__)r   s   @r#   ri   ri      sL    $ )>. . % %!:2<*?r7   ri   )NNr?   ) rX   abcr   r   typingr   numpyr/   joblibr   baser   r	   r
   r   r   utilsr   r   utils._tagsr   utils._user_interfacer   utils.metadata_routingr   utils.metaestimatorsr   r$   r6   r9   rg   ri   r*   r7   r#   <module>r      sk    /
 (   # X X - $ 7 5 3 @D0#'LT&%} T&n
H{?(G{?r7   