
    {KgX                         d Z ddlZddlmZmZ ddlmZmZmZm	Z	 ddl
mZmZmZ ddlZddlmZ ddlmZ dd	lmZmZmZmZ dd
lmZ ddlmZmZmZmZ  ej@                  e!      Z" eddd      Z# eddd      Z$ eddd       eddd       eddd      fZ%	 d6d Z&d! Z'	 d7d#Z( ee)edgd$g eeddd%&      dg eeddd'&      dgd$ge* ed      gd$gd$g eeddd'&      g eed(dd%&      gd)
d*      ddd+dd" e+d,d-       e+d.d/      fdd"ddd)
d0       Z,	 d8d1Z- e eh d2      ge)edgd$g eeddd%&      dgd$ge* ed      gd$g eeddd'&      g eed(dd%&      gd3	d*      d4ddd+d" e+d,d-       e+d.d/      fdddd3	d5       Z.y)9zLabeled Faces in the Wild (LFW) dataset

This dataset is a collection of JPEG pictures of famous people collected
over the internet, all details are available on the official website:

    http://vis-www.cs.umass.edu/lfw/
    N)IntegralReal)PathLikelistdirmakedirsremove)existsisdirjoin)Memory   )Bunch)HiddenInterval
StrOptionsvalidate_params)tarfile_extractall   )RemoteFileMetadata_fetch_remoteget_data_home
load_descrzlfw.tgzz.https://ndownloader.figshare.com/files/5976018@055f7d9c632d7370e6fb4afc7468d40f970c34a80d4c6f50ffec63f5a8d536c0)filenameurlchecksumzlfw-funneled.tgzz.https://ndownloader.figshare.com/files/5976015@b47c8422c8cded889dc5a13418c4bc2abbda121092b3533a83306f90d900100apairsDevTrain.txtz.https://ndownloader.figshare.com/files/5976012@1d454dada7dfeca0e7eab6f65dc4e97a6312d44cf142207be28d688be92aabfapairsDevTest.txtz.https://ndownloader.figshare.com/files/5976009@7cb06600ea8b2814ac26e946201cdb304296262aad67d046a16a7ec85d0ff87c	pairs.txtz.https://ndownloader.figshare.com/files/5976006@ea42330c62c92989f9d7c03237ed5d591365e89b3e649747777b70e692dc1592T         ?c                    t        |       } t        | d      }t        |      st        |       t        D ]c  }t        ||j
                        }t        |      r%|r0t        j                  d|j                         t        ||||       Wt        d|z         |rt        |d      }t        }	nt        |d      }t        }	t        |      st        ||	j
                        }
t        |
      s@|r0t        j                  d|	j                         t        |	|||       nt        d|
z        d	d
l}t        j                  d|       |j                  |
d      5 }t!        ||       d
d
d
       t#        |
       ||fS # 1 sw Y   xY w)z0Helper function to download any missing LFW data)	data_homelfw_homezDownloading LFW metadata: %s)dirname	n_retriesdelayz%s is missinglfw_funneledlfwz!Downloading LFW data (~200MB): %sr   Nz$Decompressing the data archive to %szr:gz)path)r   r   r	   r   TARGETSr   loggerinfor   r   OSErrorFUNNELED_ARCHIVEARCHIVEtarfiledebugopenr   r   )r'   funneleddownload_if_missingr*   r+   r(   targettarget_filepathdata_folder_patharchivearchive_pathr5   fps                Y/home/alanp/www/video.onchill/myenv/lib/python3.12/site-packages/sklearn/datasets/_lfw.py_check_fetch_lfwrA   M   sY   
 	2IIz*H(x9o&":FJJGH	 o?@@  .9"%0"#Hg&6&67l#"?MX% o<==;=MN\\,/2r1 0|%%%	 0/s   E??Fc                 l   	 ddl m} t        dd      t        dd      f}||}nt	        d t        ||      D              }|\  }}|j                  |j                  z
  |j                  xs dz  }|j                  |j                  z
  |j                  xs dz  }	|'t        |      }t        ||z        }t        ||	z        }	t        |       }
|s)t        j                  |
||	ft        j                        }n)t        j                  |
||	dft        j                        }t        |       D ]  \  }}|d	z  dk(  rt         j#                  d
|dz   |
       |j%                  |      }|j'                  |j                  |j                  |j                  |j                  f      }||j)                  |	|f      }t        j*                  |t        j                        }|j,                  dk(  rt/        d|z        |dz  }|s|j1                  d      }|||df<    |S # t        $ r t        d      w xY w)zInternally used to load imagesr   )ImagezThe Python Imaging Library (PIL) is required to load data from jpeg files. Please refer to https://pillow.readthedocs.io/en/stable/installation.html for installing PIL.   c              3   .   K   | ]  \  }}|xs |  y w)N ).0sdss      r@   	<genexpr>z_load_imgs.<locals>.<genexpr>   s     G,F51bqwBw,Fs   r   dtyper$   i  zLoading face #%05d / %05dzLFailed to read the image file %s, Please make sure that libjpeg is installedg     o@r   )axis.)PILrC   ImportErrorslicetuplezipstopstartstepfloatintlennpzerosfloat32	enumerater0   r6   r7   cropresizeasarrayndimRuntimeErrormean)
file_pathsslice_colorr^   rC   default_sliceh_slicew_slicehwn_facesfacesi	file_pathpil_imgfaces                   r@   
_load_imgsrq      s   
 1c]E!SM2M~GC,FGGGW		%7<<+<1=A		%7<<+<1=Av
O
O *oG'1a

;'1a+2::> "*-9t8q=LL4a!eWE **Y',,]]GMM7<<F
 nnaV,Gzz'499>=?HI 
 	 99!9$Daf5 .8 L}  
"
 	

s   H H3Fc                    g g }}t        t        |             D ]  }t        | |      }t        |      st        t        |            D 	cg c]  }	t        ||	       }
}	t	        |
      }||k\  sW|j                  dd      }|j                  |g|z         |j                  |
        t	        |      }|dk(  rt        d|z        t        j                  |      }t        j                  ||      }t        ||||      }t        j                  |      }t        j                  j                  d      j                  |       ||   ||   }}|||fS c c}	w )z~Perform the actual data loading for the lfw people dataset

    This operation is meant to be cached by a joblib wrapper.
    _ r   z*min_faces_per_person=%d is too restrictive*   )sortedr   r   r
   rX   replaceextend
ValueErrorrY   uniquesearchsortedrq   arangerandomRandomStateshuffle)r<   rd   re   r^   min_faces_per_personperson_namesrc   person_namefolder_pathfpaths
n_picturesrk   target_namesr:   rl   indicess                    r@   _fetch_lfw_peopler      sQ     "2*Lg&678+[9[!/5gk6J/KL/K!k1%/KLZ
--%--c37K
 :;e$ 9 *oG!|8;OO
 	
 99\*L__\<8Fz65&9E ii GII"%%g.'NF7O6E&,&&5 Ms   
Ebooleanneither)closedleftg        )
r'   r8   r^   r   re   rd   r9   
return_X_yr*   r+   )prefer_skip_nested_validationg      ?F      N      c        
         4   t        | ||||	      \  }
}t        j                  d|
       t        |
dd      }|j	                  t
              } ||||||      \  }}}|j                  t        |      d      }t        d      }|r||fS t        |||||	      S )
a|  Load the Labeled Faces in the Wild (LFW) people dataset (classification).

    Download it if necessary.

    =================   =======================
    Classes                                5749
    Samples total                         13233
    Dimensionality                         5828
    Features            real, between 0 and 255
    =================   =======================

    For a usage example of this dataset, see
    :ref:`sphx_glr_auto_examples_applications_plot_face_recognition.py`.

    Read more in the :ref:`User Guide <labeled_faces_in_the_wild_dataset>`.

    Parameters
    ----------
    data_home : str or path-like, default=None
        Specify another download and cache folder for the datasets. By default
        all scikit-learn data is stored in '~/scikit_learn_data' subfolders.

    funneled : bool, default=True
        Download and use the funneled variant of the dataset.

    resize : float or None, default=0.5
        Ratio used to resize the each face picture. If `None`, no resizing is
        performed.

    min_faces_per_person : int, default=None
        The extracted dataset will only retain pictures of people that have at
        least `min_faces_per_person` different pictures.

    color : bool, default=False
        Keep the 3 RGB channels instead of averaging them to a single
        gray level channel. If color is True the shape of the data has
        one more dimension than the shape with color = False.

    slice_ : tuple of slice, default=(slice(70, 195), slice(78, 172))
        Provide a custom 2D slice (height, width) to extract the
        'interesting' part of the jpeg files and avoid use statistical
        correlation from the background.

    download_if_missing : bool, default=True
        If False, raise an OSError if the data is not locally available
        instead of trying to download the data from the source site.

    return_X_y : bool, default=False
        If True, returns ``(dataset.data, dataset.target)`` instead of a Bunch
        object. See below for more information about the `dataset.data` and
        `dataset.target` object.

        .. versionadded:: 0.20

    n_retries : int, default=3
        Number of retries when HTTP errors are encountered.

        .. versionadded:: 1.5

    delay : float, default=1.0
        Number of seconds between retries.

        .. versionadded:: 1.5

    Returns
    -------
    dataset : :class:`~sklearn.utils.Bunch`
        Dictionary-like object, with the following attributes.

        data : numpy array of shape (13233, 2914)
            Each row corresponds to a ravelled face image
            of original size 62 x 47 pixels.
            Changing the ``slice_`` or resize parameters will change the
            shape of the output.
        images : numpy array of shape (13233, 62, 47)
            Each row is a face image corresponding to one of the 5749 people in
            the dataset. Changing the ``slice_``
            or resize parameters will change the shape of the output.
        target : numpy array of shape (13233,)
            Labels associated to each face image.
            Those labels range from 0-5748 and correspond to the person IDs.
        target_names : numpy array of shape (5749,)
            Names of all persons in the dataset.
            Position in array corresponds to the person ID in the target array.
        DESCR : str
            Description of the Labeled Faces in the Wild (LFW) dataset.

    (data, target) : tuple if ``return_X_y`` is True
        A tuple of two ndarray. The first containing a 2D array of
        shape (n_samples, n_features) with each row representing one
        sample and each column representing the features. The second
        ndarray of shape (n_samples,) containing the target samples.

        .. versionadded:: 0.20

    Examples
    --------
    >>> from sklearn.datasets import fetch_lfw_people
    >>> lfw_people = fetch_lfw_people()
    >>> lfw_people.data.shape
    (13233, 2914)
    >>> lfw_people.target.shape
    (13233,)
    >>> for name in lfw_people.target_names[:5]:
    ...    print(name)
    AJ Cook
    AJ Lamas
    Aaron Eckhart
    Aaron Guiel
    Aaron Patterson
    r'   r8   r9   r*   r+   z Loading LFW people faces from %s   r   locationcompressverbose)r^   r   re   rd   lfw.rst)dataimagesr:   r   DESCR)
rA   r0   r6   r   cacher   reshaperX   r   r   )r'   r8   r^   r   re   rd   r9   r   r*   r+   r(   r<   m	load_funcrl   r:   r   Xfdescrs                      r@   fetch_lfw_peopler      s    X "2/"H LL3X> 	1a8A)*I #,1#E6< 	c%j"%A	"F&y uV,f     c           
         t        | d      5 }|D cg c]/  }|j                         j                         j                  d      1 }}ddd       D cg c]  }t	        |      dkD  s| }	}t	        |	      }
t        j                  |
t              }t               }t        |	      D ]  \  }}t	        |      dk(  r2d||<   |d   t        |d         dz
  f|d   t        |d         dz
  ff}nSt	        |      d	k(  r2d||<   |d   t        |d         dz
  f|d   t        |d         dz
  ff}nt        d
|dz   |fz        t        |      D ]R  \  }\  }}	 t        ||      }t        t        t        |                  }t        |||         }|j!                  |       T  t#        ||||      }t        |j$                        }|j'                  d      }|j)                  dd       |j)                  d|dz         ||_        ||t        j*                  ddg      fS c c}w # 1 sw Y   xY wc c}w # t        $ r t        |t        |d            }Y w xY w)z}Perform the actual data loading for the LFW pairs dataset

    This operation is meant to be cached by a joblib wrapper.
    rb	Nr   rK   r$   r   r      zinvalid line %d: %rzUTF-8zDifferent personszSame person)r7   decodestripsplitrX   rY   rZ   rW   listr\   ry   r   	TypeErrorstrrv   r   appendrq   shapepopinsertarray)index_file_pathr<   rd   re   r^   
index_filelnsplit_linessl
pair_specsn_pairsr:   rc   rm   
componentspairjnameidxperson_folder	filenamesrn   pairsr   rk   s                            r@   _fetch_lfw_pairsr     sZ    
ot	$
AKL2ryy{((*006L 
%*:{c"gk"{J:*oG XXgS)FJ":.:z?aF1IAJqM 2Q 67AJqM 2Q 67D _!F1IAJqM 2Q 67AJqM 2Q 67D
 2a!eZ5HHII'oNA{cK $%5t < VGM$:;<I]IcN;Ii( . /0 z65&9EEiilG	LLA	LLGqL!EK&"(($7#GHHHO M 
%	$:2  K $%5s47I JKs:   H%4H H%H2(H2H7 H%%H/7II>   testtrain10_folds)	subsetr'   r8   r^   re   rd   r9   r*   r+   r   c        	            t        |||||      \  }	}
t        j                  d| |	       t        |	dd      }|j	                  t
              }dddd	}| |vr1t        d
| dt        t        |j                                           t        |	||          } |||
|||      \  }}}t        d      }t        |j                  t        |      d      ||||      S )a:  Load the Labeled Faces in the Wild (LFW) pairs dataset (classification).

    Download it if necessary.

    =================   =======================
    Classes                                   2
    Samples total                         13233
    Dimensionality                         5828
    Features            real, between 0 and 255
    =================   =======================

    In the official `README.txt`_ this task is described as the
    "Restricted" task.  As I am not sure as to implement the
    "Unrestricted" variant correctly, I left it as unsupported for now.

      .. _`README.txt`: http://vis-www.cs.umass.edu/lfw/README.txt

    The original images are 250 x 250 pixels, but the default slice and resize
    arguments reduce them to 62 x 47.

    Read more in the :ref:`User Guide <labeled_faces_in_the_wild_dataset>`.

    Parameters
    ----------
    subset : {'train', 'test', '10_folds'}, default='train'
        Select the dataset to load: 'train' for the development training
        set, 'test' for the development test set, and '10_folds' for the
        official evaluation set that is meant to be used with a 10-folds
        cross validation.

    data_home : str or path-like, default=None
        Specify another download and cache folder for the datasets. By
        default all scikit-learn data is stored in '~/scikit_learn_data'
        subfolders.

    funneled : bool, default=True
        Download and use the funneled variant of the dataset.

    resize : float, default=0.5
        Ratio used to resize the each face picture.

    color : bool, default=False
        Keep the 3 RGB channels instead of averaging them to a single
        gray level channel. If color is True the shape of the data has
        one more dimension than the shape with color = False.

    slice_ : tuple of slice, default=(slice(70, 195), slice(78, 172))
        Provide a custom 2D slice (height, width) to extract the
        'interesting' part of the jpeg files and avoid use statistical
        correlation from the background.

    download_if_missing : bool, default=True
        If False, raise an OSError if the data is not locally available
        instead of trying to download the data from the source site.

    n_retries : int, default=3
        Number of retries when HTTP errors are encountered.

        .. versionadded:: 1.5

    delay : float, default=1.0
        Number of seconds between retries.

        .. versionadded:: 1.5

    Returns
    -------
    data : :class:`~sklearn.utils.Bunch`
        Dictionary-like object, with the following attributes.

        data : ndarray of shape (2200, 5828). Shape depends on ``subset``.
            Each row corresponds to 2 ravel'd face images
            of original size 62 x 47 pixels.
            Changing the ``slice_``, ``resize`` or ``subset`` parameters
            will change the shape of the output.
        pairs : ndarray of shape (2200, 2, 62, 47). Shape depends on ``subset``
            Each row has 2 face images corresponding
            to same or different person from the dataset
            containing 5749 people. Changing the ``slice_``,
            ``resize`` or ``subset`` parameters will change the shape of the
            output.
        target : numpy array of shape (2200,). Shape depends on ``subset``.
            Labels associated to each pair of images.
            The two label values being different persons or the same person.
        target_names : numpy array of shape (2,)
            Explains the target values of the target array.
            0 corresponds to "Different person", 1 corresponds to "same person".
        DESCR : str
            Description of the Labeled Faces in the Wild (LFW) dataset.

    Examples
    --------
    >>> from sklearn.datasets import fetch_lfw_pairs
    >>> lfw_pairs_train = fetch_lfw_pairs(subset='train')
    >>> list(lfw_pairs_train.target_names)
    [np.str_('Different persons'), np.str_('Same person')]
    >>> lfw_pairs_train.pairs.shape
    (2200, 2, 62, 47)
    >>> lfw_pairs_train.data.shape
    (2200, 5828)
    >>> lfw_pairs_train.target.shape
    (2200,)
    r   zLoading %s LFW pairs from %sr   r   r   r   r    r"   )r   r   r   zsubset='z' is invalid: should be one of )r^   re   rd   r   r   )r   r   r:   r   r   )rA   r0   r6   r   r   r   ry   r   rv   keysr   r   r   r   rX   )r   r'   r8   r^   re   rd   r9   r*   r+   r(   r<   r   r   label_filenamesr   r   r:   r   r   s                      r@   fetch_lfw_pairsr     s   B "2/"H LL/B 	1a8A()I %"O
 _$tF?#7#7#9:;=
 	
 8_V%<=O #,)&f#E6< 	"F ]]3u:r*! r   )NTTr$   r%   )NFNr   )NFN)/__doc__loggingnumbersr   r   osr   r   r   r   os.pathr	   r
   r   numpyrY   joblibr   utilsr   utils._param_validationr   r   r   r   utils.fixesr   _baser   r   r   r   	getLogger__name__r0   r4   r3   r/   rA   rq   r   r   rQ   rP   r   r   r   rF   r   r@   <module>r      sj    " 2 2 ' '    S S ,  
		8	$ 8O &8O  $<S
 #<S
 <S4 QT/&dBV ST('V 8T*KD!T)<dC!)(AtF!KT R&,' ){ kxD@A4d9=> #'" 
"cNE"cN+
^^N IM1Ih ;<=8T*KD!T)<dC&,' ){xD@A4d9=>
 #'  
"cNE"cN+
\\r   