
    {KgW                     L   d Z ddlZddlZddlmZmZ ddlmZmZm	Z	 ddl
mZ ddlZddlZddlmZ ddlmZmZ d	d
lmZ d	dlmZmZmZmZmZ  eddd      Z ej:                  e      Z ee edgdgdgdg eed	dd      g eeddd      gdd      dddddddd       Z!y)a:  California housing dataset.

The original database is available from StatLib

    http://lib.stat.cmu.edu/datasets/

The data contains 20,640 observations on 9 variables.

This dataset contains the average house value as target variable
and the following input variables (features): average income,
housing average age, average rooms, average bedrooms, population,
average occupation, latitude, and longitude in that order.

References
----------

Pace, R. Kelley and Ronald Barry, Sparse Spatial Autoregressions,
Statistics and Probability Letters, 33 (1997) 291-297.

    N)IntegralReal)PathLikemakedirsremove)exists   )Bunch)Intervalvalidate_params   )get_data_home)RemoteFileMetadata_convert_data_dataframe_fetch_remote_pkl_filepath
load_descrzcal_housing.tgzz.https://ndownloader.figshare.com/files/5976036@aaa5c9a6afe2225cc2aed2723682ae403280c4a3695a2ddda4ffb5d8215ea681)filenameurlchecksumbooleanleft)closedg        neither)	data_homedownload_if_missing
return_X_yas_frame	n_retriesdelayT)prefer_skip_nested_validationF   g      ?c                    t        |       } t        |       st        |        t        | d      }t        |      s|st	        d      t
        j                  dj                  t        j                  |              t        t        | ||      }t        j                  d|      5 }t        j                  |j                  d      d	
      }	g d}
|	dd|
f   }	t!        j"                  |	|d       ddd       t%        |       nt!        j&                  |      }	g d}	dddf   |	ddddf   }}|dddfxx   |dddf   z  cc<   |dddfxx   |dddf   z  cc<   |dddf   |dddf   z  |dddf<   |dz  }t)        d      }|}|}d}dg}|rt+        d||||      \  }}}|r||fS t-        ||||||      S # 1 sw Y   xY w)a  Load the California housing dataset (regression).

    ==============   ==============
    Samples total             20640
    Dimensionality                8
    Features                   real
    Target           real 0.15 - 5.
    ==============   ==============

    Read more in the :ref:`User Guide <california_housing_dataset>`.

    Parameters
    ----------
    data_home : str or path-like, default=None
        Specify another download and cache folder for the datasets. By default
        all scikit-learn data is stored in '~/scikit_learn_data' subfolders.

    download_if_missing : bool, default=True
        If False, raise an OSError if the data is not locally available
        instead of trying to download the data from the source site.

    return_X_y : bool, default=False
        If True, returns ``(data.data, data.target)`` instead of a Bunch
        object.

        .. versionadded:: 0.20

    as_frame : bool, default=False
        If True, the data is a pandas DataFrame including columns with
        appropriate dtypes (numeric, string or categorical). The target is
        a pandas DataFrame or Series depending on the number of target_columns.

        .. versionadded:: 0.23

    n_retries : int, default=3
        Number of retries when HTTP errors are encountered.

        .. versionadded:: 1.5

    delay : float, default=1.0
        Number of seconds between retries.

        .. versionadded:: 1.5

    Returns
    -------
    dataset : :class:`~sklearn.utils.Bunch`
        Dictionary-like object, with the following attributes.

        data : ndarray, shape (20640, 8)
            Each row corresponding to the 8 feature values in order.
            If ``as_frame`` is True, ``data`` is a pandas object.
        target : numpy array of shape (20640,)
            Each value corresponds to the average
            house value in units of 100,000.
            If ``as_frame`` is True, ``target`` is a pandas object.
        feature_names : list of length 8
            Array of ordered feature names used in the dataset.
        DESCR : str
            Description of the California housing dataset.
        frame : pandas DataFrame
            Only present when `as_frame=True`. DataFrame with ``data`` and
            ``target``.

            .. versionadded:: 0.23

    (data, target) : tuple if ``return_X_y`` is True
        A tuple of two ndarray. The first containing a 2D array of
        shape (n_samples, n_features) with each row representing one
        sample and each column representing the features. The second
        ndarray of shape (n_samples,) containing the target samples.

        .. versionadded:: 0.20

    Notes
    -----

    This dataset consists of 20,640 samples and 9 features.

    Examples
    --------
    >>> from sklearn.datasets import fetch_california_housing
    >>> housing = fetch_california_housing()
    >>> print(housing.data.shape, housing.target.shape)
    (20640, 8) (20640,)
    >>> print(housing.feature_names[0:6])
    ['MedInc', 'HouseAge', 'AveRooms', 'AveBedrms', 'Population', 'AveOccup']
    )r   zcal_housing.pkzz1Data not found and `download_if_missing` is Falsez&Downloading Cal. housing from {} to {})dirnamer    r!   zr:gz)modenamez"CaliforniaHousing/cal_housing.data,)	delimiter)	      r	   r#            r   r   Nr.   )compress)MedIncHouseAgeAveRooms	AveBedrms
PopulationAveOccupLatitude	Longituder   r   r	   r-   r#   r,   g     j@zcalifornia_housing.rstMedHouseValfetch_california_housing)datatargetframetarget_namesfeature_namesDESCR)r   r   r   r   OSErrorloggerinfoformatARCHIVEr   r   tarfileopennploadtxtextractfilejoblibdumpr   loadr   r   r
   )r   r   r   r   r    r!   filepatharchive_pathfcal_housingcolumns_indexr>   r;   r:   descrXyr<   r=   s                      h/home/alanp/www/video.onchill/myenv/lib/python3.12/site-packages/sklearn/datasets/_california_housing.pyr9   r9   8   s   X 	2I)Y(9:H("MNN4;;GKKS	
 %	
 \\vL9Q**BCsK
 8M%a&67KKKX: : 	| kk(+	M q!t$k!QR%&8DF 	AJ$q!t*J 	AJ$q!t*J add1a4j(DAJ hF/0EAAEL -&fm\
q! !t!# s :9s   $AG  G	)"__doc__loggingrE   numbersr   r   osr   r   r   os.pathr   rJ   numpyrG   utilsr
   utils._param_validationr   r    r   _baser   r   r   r   r   rD   	getLogger__name__rA   strr9        rU   <module>re      s   0   " ) )     ?   8O 
		8	$ 8T* ){ kKxD@A4d9=> #'
 
u
urd   