
    {Kg#                         d Z ddlmZ ddlZddlmZmZmZm	Z	 ddl
mZ ddlmZmZ ddlmZmZ dd	lmZmZ  G d
 deee      Zy)zKernel ridge regression.    )RealN   )BaseEstimatorMultiOutputMixinRegressorMixin_fit_context)_solve_cholesky_kernel)PAIRWISE_KERNEL_FUNCTIONSpairwise_kernels)Interval
StrOptions)_check_sample_weightcheck_is_fittedc            
          e Zd ZU dZ eeddd      dg e e ej                               dhz        e
g eeddd      dg eeddd      g eeddd      gedgd	Zeed
<   	 ddddddddZddZd Z ed      dd       Zd Zy)KernelRidgea  Kernel ridge regression.

    Kernel ridge regression (KRR) combines ridge regression (linear least
    squares with l2-norm regularization) with the kernel trick. It thus
    learns a linear function in the space induced by the respective kernel and
    the data. For non-linear kernels, this corresponds to a non-linear
    function in the original space.

    The form of the model learned by KRR is identical to support vector
    regression (SVR). However, different loss functions are used: KRR uses
    squared error loss while support vector regression uses epsilon-insensitive
    loss, both combined with l2 regularization. In contrast to SVR, fitting a
    KRR model can be done in closed-form and is typically faster for
    medium-sized datasets. On the other hand, the learned model is non-sparse
    and thus slower than SVR, which learns a sparse model for epsilon > 0, at
    prediction-time.

    This estimator has built-in support for multi-variate regression
    (i.e., when y is a 2d-array of shape [n_samples, n_targets]).

    Read more in the :ref:`User Guide <kernel_ridge>`.

    Parameters
    ----------
    alpha : float or array-like of shape (n_targets,), default=1.0
        Regularization strength; must be a positive float. Regularization
        improves the conditioning of the problem and reduces the variance of
        the estimates. Larger values specify stronger regularization.
        Alpha corresponds to ``1 / (2C)`` in other linear models such as
        :class:`~sklearn.linear_model.LogisticRegression` or
        :class:`~sklearn.svm.LinearSVC`. If an array is passed, penalties are
        assumed to be specific to the targets. Hence they must correspond in
        number. See :ref:`ridge_regression` for formula.

    kernel : str or callable, default="linear"
        Kernel mapping used internally. This parameter is directly passed to
        :class:`~sklearn.metrics.pairwise.pairwise_kernels`.
        If `kernel` is a string, it must be one of the metrics
        in `pairwise.PAIRWISE_KERNEL_FUNCTIONS` or "precomputed".
        If `kernel` is "precomputed", X is assumed to be a kernel matrix.
        Alternatively, if `kernel` is a callable function, it is called on
        each pair of instances (rows) and the resulting value recorded. The
        callable should take two rows from X as input and return the
        corresponding kernel value as a single number. This means that
        callables from :mod:`sklearn.metrics.pairwise` are not allowed, as
        they operate on matrices, not single samples. Use the string
        identifying the kernel instead.

    gamma : float, default=None
        Gamma parameter for the RBF, laplacian, polynomial, exponential chi2
        and sigmoid kernels. Interpretation of the default value is left to
        the kernel; see the documentation for sklearn.metrics.pairwise.
        Ignored by other kernels.

    degree : float, default=3
        Degree of the polynomial kernel. Ignored by other kernels.

    coef0 : float, default=1
        Zero coefficient for polynomial and sigmoid kernels.
        Ignored by other kernels.

    kernel_params : dict, default=None
        Additional parameters (keyword arguments) for kernel function passed
        as callable object.

    Attributes
    ----------
    dual_coef_ : ndarray of shape (n_samples,) or (n_samples, n_targets)
        Representation of weight vector(s) in kernel space

    X_fit_ : {ndarray, sparse matrix} of shape (n_samples, n_features)
        Training data, which is also required for prediction. If
        kernel == "precomputed" this is instead the precomputed
        training matrix, of shape (n_samples, n_samples).

    n_features_in_ : int
        Number of features seen during :term:`fit`.

        .. versionadded:: 0.24

    feature_names_in_ : ndarray of shape (`n_features_in_`,)
        Names of features seen during :term:`fit`. Defined only when `X`
        has feature names that are all strings.

        .. versionadded:: 1.0

    See Also
    --------
    sklearn.gaussian_process.GaussianProcessRegressor : Gaussian
        Process regressor providing automatic kernel hyperparameters
        tuning and predictions uncertainty.
    sklearn.linear_model.Ridge : Linear ridge regression.
    sklearn.linear_model.RidgeCV : Ridge regression with built-in
        cross-validation.
    sklearn.svm.SVR : Support Vector Regression accepting a large variety
        of kernels.

    References
    ----------
    * Kevin P. Murphy
      "Machine Learning: A Probabilistic Perspective", The MIT Press
      chapter 14.4.3, pp. 492-493

    Examples
    --------
    >>> from sklearn.kernel_ridge import KernelRidge
    >>> import numpy as np
    >>> n_samples, n_features = 10, 5
    >>> rng = np.random.RandomState(0)
    >>> y = rng.randn(n_samples)
    >>> X = rng.randn(n_samples, n_features)
    >>> krr = KernelRidge(alpha=1.0)
    >>> krr.fit(X, y)
    KernelRidge(alpha=1.0)
    r   Nleft)closedz
array-likeprecomputedneitheralphakernelgammadegreecoef0kernel_params_parameter_constraintsr   linear   )r   r   r   r   r   c                X    || _         || _        || _        || _        || _        || _        y Nr   )selfr   r   r   r   r   r   s          X/home/alanp/www/video.onchill/myenv/lib/python3.12/site-packages/sklearn/kernel_ridge.py__init__zKernelRidge.__init__   s/     


*    c                     t        | j                        r| j                  xs i }n$| j                  | j                  | j
                  d}t        ||f| j                  dd|S )N)r   r   r   T)metricfilter_params)callabler   r   r   r   r   r   )r"   XYparamss       r#   _get_kernelzKernelRidge._get_kernel   sT    DKK ''-2F#zzT[[4::VF1WT[[WPVWWr%   c                 $    d| j                   dk(  iS )Npairwiser   )r   )r"   s    r#   
_more_tagszKernelRidge._more_tags   s    DKK=899r%   T)prefer_skip_nested_validationc                    | j                  ||ddd      \  }}|t        |t              st        ||      }| j	                  |      }t        j                  | j                        }d}t        |j                        dk(  r|j                  dd      }d}| j                  dk(  }t        |||||      | _        |r| j                  j                         | _        || _        | S )a  Fit Kernel Ridge regression model.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            Training data. If kernel == "precomputed" this is instead
            a precomputed kernel matrix, of shape (n_samples, n_samples).

        y : array-like of shape (n_samples,) or (n_samples, n_targets)
            Target values.

        sample_weight : float or array-like of shape (n_samples,), default=None
            Individual weights for each sample, ignored if None is passed.

        Returns
        -------
        self : object
            Returns the instance itself.
        csrcscT)accept_sparsemulti_output	y_numericFr   r   )_validate_data
isinstancefloatr   r-   np
atleast_1dr   lenshapereshaper   r	   
dual_coef_ravelX_fit_)r"   r*   ysample_weightKr   rC   copys           r#   fitzKernelRidge.fit   s    , ""qTT # 
1 $Zu-M0BMQdjj)qww<1		"a AE{{m+0AumTR"oo335DOr%   c                     t        |        | j                  |dd      }| j                  || j                        }t	        j
                  || j                        S )a)  Predict using the kernel ridge model.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            Samples. If kernel == "precomputed" this is instead a
            precomputed kernel matrix, shape = [n_samples,
            n_samples_fitted], where n_samples_fitted is the number of
            samples used in the fitting for this estimator.

        Returns
        -------
        C : ndarray of shape (n_samples,) or (n_samples, n_targets)
            Returns predicted values.
        r3   F)r6   reset)r   r:   r-   rD   r=   dotrB   )r"   r*   rG   s      r#   predictzKernelRidge.predict   sN      	uMQ,vva))r%   )r   r!   )__name__
__module____qualname____doc__r   r   r   setr
   keysr)   dictr   __annotations__r$   r-   r0   r   rI   rM    r%   r#   r   r      s    rj 4D8,Gs9499;<NO
 4D8$?D!T&9:4tI>?
$D 
 + +"X: 5* 6*X*r%   r   )rQ   numbersr   numpyr=   baser   r   r   r   linear_model._ridger	   metrics.pairwiser
   r   utils._param_validationr   r   utils.validationr   r   r   rV   r%   r#   <module>r^      s5    
   O O 7 I 9 C\*"NM \*r%   