
    {KgEA                     \   d Z ddlZddlZddlmZ ddlZddlmZ ddl	m
Z
 ddlmZmZ ddlmZmZmZmZ dd	lmZmZ dd
lmZmZmZ ddlmZmZ g dZ edgdgdd      d        Z edgddg eeddd      dg eeddd      dgdgdd      dddddd       Z G d deee      Z y)z8Isotonic regression for obtaining monotonic fit to data.    N)Real)interpolate)	spearmanr   )'_inplace_contiguous_isotonic_regression_make_unique)BaseEstimatorRegressorMixinTransformerMixin_fit_context)check_arraycheck_consistent_length)Interval
StrOptionsvalidate_params)_check_sample_weightcheck_is_fitted)check_increasingisotonic_regressionIsotonicRegressionz
array-likexyTprefer_skip_nested_validationc                    t        | |      \  }}|dk\  }|dvrt        |       dkD  rdt        j                  d|z   d|z
  z        z  }dt        j                  t        |       dz
        z  }t        j
                  |d|z  z
        }t        j
                  |d|z  z         }t        j                  |      t        j                  |      k7  rt        j                  d       |S )	a?  Determine whether y is monotonically correlated with x.

    y is found increasing or decreasing with respect to x based on a Spearman
    correlation test.

    Parameters
    ----------
    x : array-like of shape (n_samples,)
            Training data.

    y : array-like of shape (n_samples,)
        Training target.

    Returns
    -------
    increasing_bool : boolean
        Whether the relationship is increasing or decreasing.

    Notes
    -----
    The Spearman correlation coefficient is estimated from the data, and the
    sign of the resulting estimate is used as the result.

    In the event that the 95% confidence interval based on Fisher transform
    spans zero, a warning is raised.

    References
    ----------
    Fisher transformation. Wikipedia.
    https://en.wikipedia.org/wiki/Fisher_transformation

    Examples
    --------
    >>> from sklearn.isotonic import check_increasing
    >>> x, y = [1, 2, 3, 4, 5], [2, 4, 6, 8, 10]
    >>> check_increasing(x, y)
    np.True_
    >>> y = [10, 8, 6, 4, 2]
    >>> check_increasing(x, y)
    np.False_
    r   )g            ?   g      ?r   r   g\(\?zwConfidence interval of the Spearman correlation coefficient spans zero. Determination of ``increasing`` may be suspect.)
r   lenmathlogsqrttanhnpsignwarningswarn)	r   r   rho_increasing_boolFF_serho_0rho_1s	            T/home/alanp/www/video.onchill/myenv/lib/python3.12/site-packages/sklearn/isotonic.pyr   r      s    f q!_FCQhO +#a&1*$((C#I#)455499SVaZ(( 		!dTk/*		!dTk/* 775>RWWU^+MM     bothclosedboolean)r   sample_weighty_miny_max
increasingr5   r6   r7   r8   c                    |rt         j                  dd nt         j                  ddd   }t        | ddt         j                  t         j                  g      } t        j
                  | |   | j                        } t        || | j                  d      }t        j                  ||         }t        | |       ||=|t         j                   }|t         j                  }t        j                  | |||        | |   S )	a0  Solve the isotonic regression model.

    Read more in the :ref:`User Guide <isotonic>`.

    Parameters
    ----------
    y : array-like of shape (n_samples,)
        The data.

    sample_weight : array-like of shape (n_samples,), default=None
        Weights on each point of the regression.
        If None, weight is set to 1 (equal weights).

    y_min : float, default=None
        Lower bound on the lowest predicted value (the minimum value may
        still be higher). If not set, defaults to -inf.

    y_max : float, default=None
        Upper bound on the highest predicted value (the maximum may still be
        lower). If not set, defaults to +inf.

    increasing : bool, default=True
        Whether to compute ``y_`` is increasing (if set to True) or decreasing
        (if set to False).

    Returns
    -------
    y_ : ndarray of shape (n_samples,)
        Isotonic fit of y.

    References
    ----------
    "Active set algorithms for isotonic regression; A unifying framework"
    by Michael J. Best and Nilotpal Chakravarti, section 3.

    Examples
    --------
    >>> from sklearn.isotonic import isotonic_regression
    >>> isotonic_regression([5, 3, 1, 2, 8, 10, 7, 9, 6, 4])
    array([2.75   , 2.75   , 2.75   , 2.75   , 7.33...,
           7.33..., 7.33..., 7.33..., 7.33..., 7.33...])
    NFr   )	ensure_2d
input_namedtyper>   T)r>   copy)r$   s_r   float64float32arrayr>   r   ascontiguousarrayr   infclip)r   r5   r6   r7   r8   orders         r/   r   r   e   s    n #BEE!HddEA3rzz2::>VWA
5)A(tTM((u)=>M+A}=E-=VVGE=FFE
5%#U8Or0   c                        e Zd ZU dZ eeddd      dg eeddd      dgd edh      g eh d      gdZee	d	<   ddd
dddZ
d Zd ZddZ ed
      dd       Zd Zd Zd ZddZ fdZ fdZd Z xZS )r   a  Isotonic regression model.

    Read more in the :ref:`User Guide <isotonic>`.

    .. versionadded:: 0.13

    Parameters
    ----------
    y_min : float, default=None
        Lower bound on the lowest predicted value (the minimum value may
        still be higher). If not set, defaults to -inf.

    y_max : float, default=None
        Upper bound on the highest predicted value (the maximum may still be
        lower). If not set, defaults to +inf.

    increasing : bool or 'auto', default=True
        Determines whether the predictions should be constrained to increase
        or decrease with `X`. 'auto' will decide based on the Spearman
        correlation estimate's sign.

    out_of_bounds : {'nan', 'clip', 'raise'}, default='nan'
        Handles how `X` values outside of the training domain are handled
        during prediction.

        - 'nan', predictions will be NaN.
        - 'clip', predictions will be set to the value corresponding to
          the nearest train interval endpoint.
        - 'raise', a `ValueError` is raised.

    Attributes
    ----------
    X_min_ : float
        Minimum value of input array `X_` for left bound.

    X_max_ : float
        Maximum value of input array `X_` for right bound.

    X_thresholds_ : ndarray of shape (n_thresholds,)
        Unique ascending `X` values used to interpolate
        the y = f(X) monotonic function.

        .. versionadded:: 0.24

    y_thresholds_ : ndarray of shape (n_thresholds,)
        De-duplicated `y` values suitable to interpolate the y = f(X)
        monotonic function.

        .. versionadded:: 0.24

    f_ : function
        The stepwise interpolating function that covers the input domain ``X``.

    increasing_ : bool
        Inferred value for ``increasing``.

    See Also
    --------
    sklearn.linear_model.LinearRegression : Ordinary least squares Linear
        Regression.
    sklearn.ensemble.HistGradientBoostingRegressor : Gradient boosting that
        is a non-parametric model accepting monotonicity constraints.
    isotonic_regression : Function to solve the isotonic regression model.

    Notes
    -----
    Ties are broken using the secondary method from de Leeuw, 1977.

    References
    ----------
    Isotonic Median Regression: A Linear Programming Approach
    Nilotpal Chakravarti
    Mathematics of Operations Research
    Vol. 14, No. 2 (May, 1989), pp. 303-308

    Isotone Optimization in R : Pool-Adjacent-Violators
    Algorithm (PAVA) and Active Set Methods
    de Leeuw, Hornik, Mair
    Journal of Statistical Software 2009

    Correctness of Kruskal's algorithms for monotone regression with ties
    de Leeuw, Psychometrica, 1977

    Examples
    --------
    >>> from sklearn.datasets import make_regression
    >>> from sklearn.isotonic import IsotonicRegression
    >>> X, y = make_regression(n_samples=10, n_features=1, random_state=41)
    >>> iso_reg = IsotonicRegression().fit(X, y)
    >>> iso_reg.predict([.1, .2])
    array([1.8628..., 3.7256...])
    Nr1   r2   r4   auto>   nanrG   raiser6   r7   r8   out_of_bounds_parameter_constraintsTrK   c                <    || _         || _        || _        || _        y NrM   )selfr6   r7   r8   rN   s        r/   __init__zIsotonicRegression.__init__  s    

$*r0   c                     |j                   dk(  s/|j                   dk(  r|j                  d   dk(  sd}t        |      y y )Nr      zKIsotonic regression input X should be a 1d array or 2d array with 1 feature)ndimshape
ValueError)rR   Xmsgs      r/   _check_input_data_shapez*IsotonicRegression._check_input_data_shape  sC    !!
a*  S/! 1@r0   c                     | j                   dk(  }t              dk(  rfd| _        yt        j                  |d|      | _        y)zBuild the f_ interp1d function.rL   r   c                 :    j                  | j                        S rQ   )repeatrW   r   s    r/   <lambda>z-IsotonicRegression._build_f.<locals>.<lambda>&  s     1r0   linear)kindbounds_errorN)rN   r   f_r   interp1d)rR   rY   r   rb   s     ` r/   _build_fzIsotonicRegression._build_f   sB     ))W4q6Q;1DG!**18,DGr0   c           	      ^   | j                  |       |j                  d      }| j                  dk(  rt        ||      | _        n| j                  | _        t        |||j                        }|dkD  }||   ||   ||   }}}t        j                  ||f      }|||fD cg c]  }||   	 c}\  }}}t        |||      \  }}	}
|}t        |	|
| j                  | j                  | j                        }t        j                  |      t        j                  |      c| _        | _        |r|t        j"                  t%        |      ft&              }t        j(                  t        j*                  |dd |dd       t        j*                  |dd |d	d             |dd ||   ||   fS ||fS c c}w )
z Build the y_ IsotonicRegression.r;   rJ   r?   r   r9   r   NrU   )r[   reshaper8   r   increasing_r   r>   r$   lexsortr   r   r6   r7   minmaxX_min_X_max_onesr   bool
logical_or	not_equal)rR   rY   r   r5   trim_duplicatesmaskrH   rD   unique_Xunique_yunique_sample_weight	keep_datas               r/   _build_yzIsotonicRegression._build_y,  s   $$Q'IIbM ??f$/15D#D -]AQWWMq gqwd0Cm1

Aq6":;Q9NO9NuU|9NO1m3?1m3T0(0.****''
 $&66!9bffQi T[Q	6I !mmQqWaf-r||AaGQqrU/KIaO Y<9-- a4K; Ps   F*r   c                 4   t        dd      }t        |fdt        j                  t        j                  gd|}t        |fd|j
                  d|}t        |||       | j                  |||      \  }}||c| _        | _	        | j                  ||       | S )a  Fit the model using X, y as training data.

        Parameters
        ----------
        X : array-like of shape (n_samples,) or (n_samples, 1)
            Training data.

            .. versionchanged:: 0.24
               Also accepts 2d array with 1 feature.

        y : array-like of shape (n_samples,)
            Training target.

        sample_weight : array-like of shape (n_samples,), default=None
            Weights. If set to None, all weights will be set to 1 (equal
            weights).

        Returns
        -------
        self : object
            Returns an instance of self.

        Notes
        -----
        X is stored for future use, as :meth:`transform` needs X to interpolate
        new input data.
        F)accept_sparser<   rY   )r=   r>   r   )dictr   r$   rB   rC   r>   r   ry   X_thresholds_y_thresholds_re   )rR   rY   r   r5   check_paramss        r/   fitzIsotonicRegression.fit]  s    : %5A
bjj"**%=
AM
 IcILI1m4 }}Q=11 23A.D. 	ar0   c                    t        | d      r| j                  j                  }nt        j                  }t        ||d      }| j                  |       |j                  d      }| j                  dk(  r+t        j                  || j                  | j                        }| j                  |      }|j                  |j                        }|S )a  `_transform` is called by both `transform` and `predict` methods.

        Since `transform` is wrapped to output arrays of specific types (e.g.
        NumPy arrays, pandas DataFrame), we cannot make `predict` call `transform`
        directly.

        The above behaviour could be changed in the future, if we decide to output
        other type of arrays when calling `predict`.
        r}   F)r>   r<   r;   rG   )hasattrr}   r>   r$   rB   r   r[   rh   rN   rG   rm   rn   rc   astype)rR   Tr>   ress       r/   
_transformzIsotonicRegression._transform  s     4)&&,,EJJE%8$$Q'IIbM'4;;4Aggaj jj!
r0   c                 $    | j                  |      S )a  Transform new data by linear interpolation.

        Parameters
        ----------
        T : array-like of shape (n_samples,) or (n_samples, 1)
            Data to transform.

            .. versionchanged:: 0.24
               Also accepts 2d array with 1 feature.

        Returns
        -------
        y_pred : ndarray of shape (n_samples,)
            The transformed data.
        r   rR   r   s     r/   	transformzIsotonicRegression.transform  s      q!!r0   c                 $    | j                  |      S )a%  Predict new data by linear interpolation.

        Parameters
        ----------
        T : array-like of shape (n_samples,) or (n_samples, 1)
            Data to transform.

        Returns
        -------
        y_pred : ndarray of shape (n_samples,)
            Transformed data.
        r   r   s     r/   predictzIsotonicRegression.predict  s     q!!r0   c                     t        | d       | j                  j                  j                         }t	        j
                  | dgt              S )aK  Get output feature names for transformation.

        Parameters
        ----------
        input_features : array-like of str or None, default=None
            Ignored.

        Returns
        -------
        feature_names_out : ndarray of str objects
            An ndarray with one string i.e. ["isotonicregression0"].
        rc   0r?   )r   	__class____name__lowerr$   asarrayobject)rR   input_features
class_names      r/   get_feature_names_outz(IsotonicRegression.get_feature_names_out  sA     	d#^^,,224
zzj\+,F;;r0   c                 H    t         |          }|j                  dd       |S )z0Pickle-protocol - return state of the estimator.rc   N)super__getstate__poprR   stater   s     r/   r   zIsotonicRegression.__getstate__  s#    $&		$r0   c                     t         |   |       t        | d      r4t        | d      r'| j                  | j                  | j
                         yyy)znPickle-protocol - set state of the estimator.

        We need to rebuild the interpolation function.
        r}   r~   N)r   __setstate__r   re   r}   r~   r   s     r/   r   zIsotonicRegression.__setstate__  sH    
 	U#4)gdO.LMM$,,d.@.@A /M)r0   c                     ddgiS )NX_types1darray )rR   s    r/   
_more_tagszIsotonicRegression._more_tags  s    I;''r0   )TrQ   )r   
__module____qualname____doc__r   r   r   rO   r|   __annotations__rS   r[   re   ry   r   r   r   r   r   r   r   r   r   __classcell__)r   s   @r/   r   r      s    [| 4tF;TB4tF;TB *fX"67$%=>?	$D  !%DTQV +"
/b 5/ 6/b<"$"&<"B(r0   r   )!r   r    r&   numbersr   numpyr$   scipyr   scipy.statsr   	_isotonicr   r   baser	   r
   r   r   utilsr   r   utils._param_validationr   r   r   utils.validationr   r   __all__r   r   r   r   r0   r/   <module>r      s    >      ! L O O 7 J J C
K ^^ #'BBJ ^&-4tF;TB4tF;TB k #'	 D;	;|G()9= G(r0   