
    tKg,                     b    d dl Zd dlmZ d dlmZmZ ddlmZ  ed dd       dd	d
d       Z	y)    N)_get_nan)array_namespacexp_copysign   )_axis_nan_policy_factoryc                     | S N xs    Z/home/alanp/www/video.onchill/myenv/lib/python3.12/site-packages/scipy/stats/_variation.py<lambda>r   
   s    a    c                     | fS r	   r
   r   s    r   r   r   
   s    r   )	n_outputsresult_to_tupleF)keepdimsc                   t        |       }|j                  |       } ||j                  | d      } d}| j                  |   }t	        |       }| j
                  dk(  s||kD  rOt        | j                        }|j                  |       |j                  ||      }	|	j                  dk(  r|	d   S |	S |j                  | |      }
||k(  rc|j                  | |d      }|j                  |dkD  t        |j                  |j                        |
      |      }	|	j                  dk(  r|	d   S |	S t        j                   dd	      5  |j                  | ||      }||
z  }	ddd       	j                  dk(  r|	d   S |	S # 1 sw Y   xY w)
a  
    Compute the coefficient of variation.

    The coefficient of variation is the standard deviation divided by the
    mean.  This function is equivalent to::

        np.std(x, axis=axis, ddof=ddof) / np.mean(x)

    The default for ``ddof`` is 0, but many definitions of the coefficient
    of variation use the square root of the unbiased sample variance
    for the sample standard deviation, which corresponds to ``ddof=1``.

    The function does not take the absolute value of the mean of the data,
    so the return value is negative if the mean is negative.

    Parameters
    ----------
    a : array_like
        Input array.
    axis : int or None, optional
        Axis along which to calculate the coefficient of variation.
        Default is 0. If None, compute over the whole array `a`.
    nan_policy : {'propagate', 'raise', 'omit'}, optional
        Defines how to handle when input contains ``nan``.
        The following options are available:

          * 'propagate': return ``nan``
          * 'raise': raise an exception
          * 'omit': perform the calculation with ``nan`` values omitted

        The default is 'propagate'.
    ddof : int, optional
        Gives the "Delta Degrees Of Freedom" used when computing the
        standard deviation.  The divisor used in the calculation of the
        standard deviation is ``N - ddof``, where ``N`` is the number of
        elements.  `ddof` must be less than ``N``; if it isn't, the result
        will be ``nan`` or ``inf``, depending on ``N`` and the values in
        the array.  By default `ddof` is zero for backwards compatibility,
        but it is recommended to use ``ddof=1`` to ensure that the sample
        standard deviation is computed as the square root of the unbiased
        sample variance.

    Returns
    -------
    variation : ndarray
        The calculated variation along the requested axis.

    Notes
    -----
    There are several edge cases that are handled without generating a
    warning:

    * If both the mean and the standard deviation are zero, ``nan``
      is returned.
    * If the mean is zero and the standard deviation is nonzero, ``inf``
      is returned.
    * If the input has length zero (either because the array has zero
      length, or all the input values are ``nan`` and ``nan_policy`` is
      ``'omit'``), ``nan`` is returned.
    * If the input contains ``inf``, ``nan`` is returned.

    References
    ----------
    .. [1] Zwillinger, D. and Kokoska, S. (2000). CRC Standard
       Probability and Statistics Tables and Formulae. Chapman & Hall: New
       York. 2000.

    Examples
    --------
    >>> import numpy as np
    >>> from scipy.stats import variation
    >>> variation([1, 2, 3, 4, 5], ddof=1)
    0.5270462766947299

    Compute the variation along a given dimension of an array that contains
    a few ``nan`` values:

    >>> x = np.array([[  10.0, np.nan, 11.0, 19.0, 23.0, 29.0, 98.0],
    ...               [  29.0,   30.0, 32.0, 33.0, 35.0, 56.0, 57.0],
    ...               [np.nan, np.nan, 12.0, 13.0, 16.0, 16.0, 17.0]])
    >>> variation(x, axis=1, ddof=1, nan_policy='omit')
    array([1.05109361, 0.31428986, 0.146483  ])

    N)r   )
fill_valuer
   )axis)r   
correctionignore)divideinvalid)r   asarrayreshapeshaper   sizelistpopfullndimmeanstdwherer   infnperrstate)ar   
nan_policyddofr   xpnNaNshpresultmean_astd_as               r   	variationr4   	   sk   p 
	B


1A |JJq% 	A
1+Cvv{dQh 177m-#[[A-vbz969WWQTW"Fqyqt2%!)[BFF1CV%LcR#[[A-vbz969	Hh	7qt5 
8  )6":5v5	 
8	7s   E::F)r   	propagater   )
numpyr(   scipy._lib._utilr   scipy._lib._array_apir   r   _axis_nan_policyr   r4   r
   r   r   <module>r:      s;     % > 6 1nt6U t6t6r   