
    tKga                         d dl Z d dlmZmZ d dlmZ d dlmZmZm	Z	m
Z
mZmZmZmZmZmZmZmZmZmZmZmZ d dlZddlmZ ddlmZmZ dgZ G d	 d      Zd
 Zy)    N)linalgspecial)check_random_state)asarray
atleast_2dreshapezerosnewaxisexppisqrtravelpower
atleast_1dsqueezesum	transposeonescov   )_mvn)gaussian_kernel_estimategaussian_kernel_estimate_loggaussian_kdec                       e Zd ZdZddZd ZeZd Zd ZddZ	d Z
dd	Zd
 Zd ZeZde_        ddZd Zed        Zd Zd Zd Zed        Zed        Zy)r   a&  Representation of a kernel-density estimate using Gaussian kernels.

    Kernel density estimation is a way to estimate the probability density
    function (PDF) of a random variable in a non-parametric way.
    `gaussian_kde` works for both uni-variate and multi-variate data.   It
    includes automatic bandwidth determination.  The estimation works best for
    a unimodal distribution; bimodal or multi-modal distributions tend to be
    oversmoothed.

    Parameters
    ----------
    dataset : array_like
        Datapoints to estimate from. In case of univariate data this is a 1-D
        array, otherwise a 2-D array with shape (# of dims, # of data).
    bw_method : str, scalar or callable, optional
        The method used to calculate the estimator bandwidth.  This can be
        'scott', 'silverman', a scalar constant or a callable.  If a scalar,
        this will be used directly as `kde.factor`.  If a callable, it should
        take a `gaussian_kde` instance as only parameter and return a scalar.
        If None (default), 'scott' is used.  See Notes for more details.
    weights : array_like, optional
        weights of datapoints. This must be the same shape as dataset.
        If None (default), the samples are assumed to be equally weighted

    Attributes
    ----------
    dataset : ndarray
        The dataset with which `gaussian_kde` was initialized.
    d : int
        Number of dimensions.
    n : int
        Number of datapoints.
    neff : int
        Effective number of datapoints.

        .. versionadded:: 1.2.0
    factor : float
        The bandwidth factor, obtained from `kde.covariance_factor`. The square
        of `kde.factor` multiplies the covariance matrix of the data in the kde
        estimation.
    covariance : ndarray
        The covariance matrix of `dataset`, scaled by the calculated bandwidth
        (`kde.factor`).
    inv_cov : ndarray
        The inverse of `covariance`.

    Methods
    -------
    evaluate
    __call__
    integrate_gaussian
    integrate_box_1d
    integrate_box
    integrate_kde
    pdf
    logpdf
    resample
    set_bandwidth
    covariance_factor

    Notes
    -----
    Bandwidth selection strongly influences the estimate obtained from the KDE
    (much more so than the actual shape of the kernel).  Bandwidth selection
    can be done by a "rule of thumb", by cross-validation, by "plug-in
    methods" or by other means; see [3]_, [4]_ for reviews.  `gaussian_kde`
    uses a rule of thumb, the default is Scott's Rule.

    Scott's Rule [1]_, implemented as `scotts_factor`, is::

        n**(-1./(d+4)),

    with ``n`` the number of data points and ``d`` the number of dimensions.
    In the case of unequally weighted points, `scotts_factor` becomes::

        neff**(-1./(d+4)),

    with ``neff`` the effective number of datapoints.
    Silverman's Rule [2]_, implemented as `silverman_factor`, is::

        (n * (d + 2) / 4.)**(-1. / (d + 4)).

    or in the case of unequally weighted points::

        (neff * (d + 2) / 4.)**(-1. / (d + 4)).

    Good general descriptions of kernel density estimation can be found in [1]_
    and [2]_, the mathematics for this multi-dimensional implementation can be
    found in [1]_.

    With a set of weighted samples, the effective number of datapoints ``neff``
    is defined by::

        neff = sum(weights)^2 / sum(weights^2)

    as detailed in [5]_.

    `gaussian_kde` does not currently support data that lies in a
    lower-dimensional subspace of the space in which it is expressed. For such
    data, consider performing principle component analysis / dimensionality
    reduction and using `gaussian_kde` with the transformed data.

    References
    ----------
    .. [1] D.W. Scott, "Multivariate Density Estimation: Theory, Practice, and
           Visualization", John Wiley & Sons, New York, Chicester, 1992.
    .. [2] B.W. Silverman, "Density Estimation for Statistics and Data
           Analysis", Vol. 26, Monographs on Statistics and Applied Probability,
           Chapman and Hall, London, 1986.
    .. [3] B.A. Turlach, "Bandwidth Selection in Kernel Density Estimation: A
           Review", CORE and Institut de Statistique, Vol. 19, pp. 1-33, 1993.
    .. [4] D.M. Bashtannyk and R.J. Hyndman, "Bandwidth selection for kernel
           conditional density estimation", Computational Statistics & Data
           Analysis, Vol. 36, pp. 279-298, 2001.
    .. [5] Gray P. G., 1969, Journal of the Royal Statistical Society.
           Series A (General), 132, 272

    Examples
    --------
    Generate some random two-dimensional data:

    >>> import numpy as np
    >>> from scipy import stats
    >>> def measure(n):
    ...     "Measurement model, return two coupled measurements."
    ...     m1 = np.random.normal(size=n)
    ...     m2 = np.random.normal(scale=0.5, size=n)
    ...     return m1+m2, m1-m2

    >>> m1, m2 = measure(2000)
    >>> xmin = m1.min()
    >>> xmax = m1.max()
    >>> ymin = m2.min()
    >>> ymax = m2.max()

    Perform a kernel density estimate on the data:

    >>> X, Y = np.mgrid[xmin:xmax:100j, ymin:ymax:100j]
    >>> positions = np.vstack([X.ravel(), Y.ravel()])
    >>> values = np.vstack([m1, m2])
    >>> kernel = stats.gaussian_kde(values)
    >>> Z = np.reshape(kernel(positions).T, X.shape)

    Plot the results:

    >>> import matplotlib.pyplot as plt
    >>> fig, ax = plt.subplots()
    >>> ax.imshow(np.rot90(Z), cmap=plt.cm.gist_earth_r,
    ...           extent=[xmin, xmax, ymin, ymax])
    >>> ax.plot(m1, m2, 'k.', markersize=2)
    >>> ax.set_xlim([xmin, xmax])
    >>> ax.set_ylim([ymin, ymax])
    >>> plt.show()

    Nc                    t        t        |            | _        | j                  j                  dkD  st	        d      | j                  j
                  \  | _        | _        |t        |      j                  t              | _        | xj                  t        | j                        z  c_        | j                  j                  dk7  rt	        d      t        | j                        | j                  k7  rt	        d      dt        | j                  dz        z  | _        | j                  | j                  kD  rd}t	        |      	 | j#                  |       y # t$        j&                  $ r}d}t%        j&                  |      |d }~ww xY w)	Nr   z.`dataset` input should have multiple elements.z*`weights` input should be one-dimensional.z%`weights` input should be of length n   a1  Number of dimensions is greater than number of samples. This results in a singular data covariance matrix, which cannot be treated using the algorithms implemented in `gaussian_kde`. Note that `gaussian_kde` interprets each *column* of `dataset` to be a point; consider transposing the input to `dataset`.	bw_methodab  The data appears to lie in a lower-dimensional subspace of the space in which it is expressed. This has resulted in a singular data covariance matrix, which cannot be treated using the algorithms implemented in `gaussian_kde`. Consider performing principle component analysis / dimensionality reduction and using `gaussian_kde` with the transformed data.)r   r   datasetsize
ValueErrorshapednr   astypefloat_weightsr   weightsndimlen_neffset_bandwidthr   LinAlgError)selfr    r   r)   msges         T/home/alanp/www/video.onchill/myenv/lib/python3.12/site-packages/scipy/stats/_kde.py__init__zgaussian_kde.__init__   sA   !''"23||  1$MNN++&w/66u=DMMMS//M||  A% !MNN4==!TVV+ !HII3t}}a/00DJ 66DFF?-C S/!
	13!! 	1?C $$S)q0	1s   E F	,FF	c                    t        t        |            }|j                  \  }}|| j                  k7  rL|dk(  r*|| j                  k(  rt	        || j                  df      }d}nd| d| j                   }t        |      t        | j                  |      \  }}t        |   | j                  j                  | j                  dddf   |j                  | j                  |      }|dddf   S )a  Evaluate the estimated pdf on a set of points.

        Parameters
        ----------
        points : (# of dimensions, # of points)-array
            Alternatively, a (# of dimensions,) vector can be passed in and
            treated as a single point.

        Returns
        -------
        values : (# of points,)-array
            The values at each point.

        Raises
        ------
        ValueError : if the dimensionality of the input points is different than
                     the dimensionality of the KDE.

        r   points have dimension , dataset has dimension Nr   )r   r   r#   r$   r   r"   _get_output_dtype
covariancer   r    Tr)   cho_cov)r/   pointsr$   mr0   output_dtypespecresults           r2   evaluatezgaussian_kde.evaluate   s    ( GFO,||1;Av!tvv+ $&&!5/s 3004x9 o%.tGd)$/LLNNDLLD1HHdllL2 ad|    c                    t        t        |            }t        |      }|j                  | j                  fk7  rt        d| j                  z        |j                  | j                  | j                  fk7  rt        d| j                  z        |ddt        f   }| j                  |z   }t        j                  |      }| j                  |z
  }t        j                  ||      }t        j                  t        j                  |d               }t        dt         z  |j                  d   dz        |z  }t#        ||z  d      dz  }	t#        t%        |	       | j&                  z  d      |z  }
|
S )aW  
        Multiply estimated density by a multivariate Gaussian and integrate
        over the whole space.

        Parameters
        ----------
        mean : aray_like
            A 1-D array, specifying the mean of the Gaussian.
        cov : array_like
            A 2-D array, specifying the covariance matrix of the Gaussian.

        Returns
        -------
        result : scalar
            The value of the integral.

        Raises
        ------
        ValueError
            If the mean or covariance of the input Gaussian differs from
            the KDE's dimensionality.

        zmean does not have dimension %sz%covariance does not have dimension %sNr   r          @axis)r   r   r   r#   r$   r"   r
   r8   r   
cho_factorr    	cho_solvenpproddiagonalr   r   r   r   r)   )r/   meanr   sum_covsum_cov_choldifftdiffsqrt_det
norm_constenergiesr?   s              r2   integrate_gaussianzgaussian_kde.integrate_gaussian  s8   0 '$-(o::$&&">GHH99((DtvvMNN AwJ//C'
 ((1||d"  t4772;;|A781r67==#3c#9:XE
te|!,s2S(^DLL0q9JFrA   c                 ~   | j                   dk7  rt        d      t        t        | j                              d   }t        || j
                  z
  |z        }t        || j
                  z
  |z        }t        j                  | j                  t        j                  |      t        j                  |      z
  z        }|S )a  
        Computes the integral of a 1D pdf between two bounds.

        Parameters
        ----------
        low : scalar
            Lower bound of integration.
        high : scalar
            Upper bound of integration.

        Returns
        -------
        value : scalar
            The result of the integral.

        Raises
        ------
        ValueError
            If the KDE is over more than one dimension.

        r   z'integrate_box_1d() only handles 1D pdfsr   )r$   r"   r   r   r8   r    rH   r   r)   r   ndtr)r/   lowhighstdevnormalized_lownormalized_highvalues          r2   integrate_box_1dzgaussian_kde.integrate_box_1dI  s    , 66Q;FGGd4??+,Q/dll 2e;<!4 =>t||_5^456 7 rA   c                     |d|i}ni }t        j                  ||| j                  | j                  | j                  fi |\  }}|r)d| j
                  dz  z  }t        j                  |d       |S )a  Computes the integral of a pdf over a rectangular interval.

        Parameters
        ----------
        low_bounds : array_like
            A 1-D array containing the lower bounds of integration.
        high_bounds : array_like
            A 1-D array containing the upper bounds of integration.
        maxpts : int, optional
            The maximum number of points to use for integration.

        Returns
        -------
        value : scalar
            The result of the integral.

        maxptsz6An integral in _mvn.mvnun requires more points than %si  r   )
stacklevel)r   mvnun_weightedr    r)   r8   r$   warningswarn)r/   
low_boundshigh_boundsr^   
extra_kwdsr[   informr0   s           r2   integrate_boxzgaussian_kde.integrate_boxl  s|    $ "F+JJ++J,0LL$,,,0OOK?IKv KFFTM#CMM#!,rA   c                    |j                   | j                   k7  rt        d      |j                  | j                  k  r|}| }n| }|}|j                  |j                  z   }t	        j
                  |      }d}t        |j                        D ]  }|j                  dd|t        f   }|j                  |z
  }	t	        j                  ||	      }
t        |	|
z  d      dz  }|t        t        |       |j                  z  d      |j                  |   z  z  } t        j                  t        j                  |d               }t!        dt"        z  |j$                  d   dz        |z  }||z  }|S )a  
        Computes the integral of the product of this  kernel density estimate
        with another.

        Parameters
        ----------
        other : gaussian_kde instance
            The other kde.

        Returns
        -------
        value : scalar
            The result of the integral.

        Raises
        ------
        ValueError
            If the KDEs have different dimensionality.

        z$KDEs are not the same dimensionalityg        Nr   rD   rC   r   )r$   r"   r%   r8   r   rF   ranger    r
   rG   r   r   r)   rH   rI   rJ   r   r   r#   )r/   othersmalllargerL   rM   r?   irK   rN   rO   rR   rP   rQ   s                 r2   integrate_kdezgaussian_kde.integrate_kde  sI   * 77dffCDD 77TVVEEEE""U%5%55((1uwwA==Aw/D==4'D$$\48E4%<a036Hc#xi.6Q?a@PPPF   772;;|A781r67==#3c#9:XE
*rA   c                 F   |t        | j                        }t        |      }t        |j	                  t        | j                  ft              | j                  |            }|j                  | j                  || j                        }| j                  dd|f   }||z   S )aA  Randomly sample a dataset from the estimated pdf.

        Parameters
        ----------
        size : int, optional
            The number of samples to draw.  If not provided, then the size is
            the same as the effective number of samples in the underlying
            dataset.
        seed : {None, int, `numpy.random.Generator`, `numpy.random.RandomState`}, optional
            If `seed` is None (or `np.random`), the `numpy.random.RandomState`
            singleton is used.
            If `seed` is an int, a new ``RandomState`` instance is used,
            seeded with `seed`.
            If `seed` is already a ``Generator`` or ``RandomState`` instance then
            that instance is used.

        Returns
        -------
        resample : (self.d, `size`) ndarray
            The sampled dataset.

        N)r!   )r!   p)intneffr   r   multivariate_normalr	   r$   r'   r8   choicer%   r)   r    )r/   r!   seedrandom_statenormindicesmeanss          r2   resamplezgaussian_kde.resample  s    . <tyy>D)$/99466)U#T__4 : 
  %%dff44<<%HQZ(t|rA   c                 N    t        | j                  d| j                  dz   z        S )zoCompute Scott's factor.

        Returns
        -------
        s : float
            Scott's factor.
                 r   rr   r$   r/   s    r2   scotts_factorzgaussian_kde.scotts_factor  s!     TYYTVVAX//rA   c                 t    t        | j                  | j                  dz   z  dz  d| j                  dz   z        S )z{Compute the Silverman factor.

        Returns
        -------
        s : float
            The silverman factor.
        rC   g      @r|   r}   r~   r   s    r2   silverman_factorzgaussian_kde.silverman_factor  s3     TYYs
+C/dffQh@@rA   a0  Computes the coefficient (`kde.factor`) that
        multiplies the data covariance matrix to obtain the kernel covariance
        matrix. The default is `scotts_factor`.  A subclass can overwrite this
        method to provide a different method, or set it through a call to
        `kde.set_bandwidth`.c                 L    ndk(  r j                    _        nxdk(  r j                   _        nat        j                        r"t        t              sd _        fd _        n*t              r _         fd _        nd}t        |       j                          y)aX  Compute the estimator bandwidth with given method.

        The new bandwidth calculated after a call to `set_bandwidth` is used
        for subsequent evaluations of the estimated density.

        Parameters
        ----------
        bw_method : str, scalar or callable, optional
            The method used to calculate the estimator bandwidth.  This can be
            'scott', 'silverman', a scalar constant or a callable.  If a
            scalar, this will be used directly as `kde.factor`.  If a callable,
            it should take a `gaussian_kde` instance as only parameter and
            return a scalar.  If None (default), nothing happens; the current
            `kde.covariance_factor` method is kept.

        Notes
        -----
        .. versionadded:: 0.11

        Examples
        --------
        >>> import numpy as np
        >>> import scipy.stats as stats
        >>> x1 = np.array([-7, -5, 1, 4, 5.])
        >>> kde = stats.gaussian_kde(x1)
        >>> xs = np.linspace(-10, 10, num=50)
        >>> y1 = kde(xs)
        >>> kde.set_bandwidth(bw_method='silverman')
        >>> y2 = kde(xs)
        >>> kde.set_bandwidth(bw_method=kde.factor / 3.)
        >>> y3 = kde(xs)

        >>> import matplotlib.pyplot as plt
        >>> fig, ax = plt.subplots()
        >>> ax.plot(x1, np.full(x1.shape, 1 / (4. * x1.size)), 'bo',
        ...         label='Data points (rescaled)')
        >>> ax.plot(xs, y1, label='Scott (default)')
        >>> ax.plot(xs, y2, label='Silverman')
        >>> ax.plot(xs, y3, label='Const (1/3 * Silverman)')
        >>> ax.legend()
        >>> plt.show()

        Nscott	silvermanzuse constantc                       S N r   s   r2   <lambda>z,gaussian_kde.set_bandwidth.<locals>.<lambda>2  s    YrA   c                  &     j                         S r   )
_bw_methodr   s   r2   r   z,gaussian_kde.set_bandwidth.<locals>.<lambda>5  s    T__T-BrA   zC`bw_method` should be 'scott', 'silverman', a scalar or a callable.)r   covariance_factorr   rH   isscalar
isinstancestrr   callabler"   _compute_covariance)r/   r   r0   s   `` r2   r-   zgaussian_kde.set_bandwidth  s    X '!%)%7%7D"+%%)%:%:D"[[#Jy#,F,DO%6D"i 'DO%BD"#CS/!  "rA   c           
      v   | j                         | _        t        | d      sWt        t	        | j
                  dd| j                              | _        t        j                  | j                  d      | _
        | j                  | j                  dz  z  | _        | j                  | j                  z  j                  t        j                        | _        dt        j                   t        j"                  | j                  t        j$                  dt&        z        z              j)                         z  | _        y)	zcComputes the covariance matrix for each Gaussian kernel using
        covariance_factor().
        _data_cho_covr   FrowvarbiasaweightsT)lowerr   N)r   factorhasattrr   r   r    r)   _data_covariancer   choleskyr   r8   r&   rH   float64r:   logdiagr   r   r   log_detr   s    r2   r   z gaussian_kde._compute_covariance=  s     ,,.t_-$.s4<<498<0F %GD! "(1F1F7;"=D //$++q.@**T[[8@@L*,''!B$-)8 !9 ::=#%@rA   c                     | j                         | _        t        t        | j                  dd| j
                              | _        t        j                  | j                        | j                  dz  z  S )Nr   Fr   r   )	r   r   r   r   r    r)   r   r   invr   s    r2   inv_covzgaussian_kde.inv_covO  s]     ,,. *3t||A05,N !Ozz$//04;;>AArA   c                 $    | j                  |      S )z
        Evaluate the estimated pdf on a provided set of points.

        Notes
        -----
        This is an alias for `gaussian_kde.evaluate`.  See the ``evaluate``
        docstring for more details.

        )r@   )r/   xs     r2   pdfzgaussian_kde.pdf[  s     }}QrA   c                    t        |      }|j                  \  }}|| j                  k7  rL|dk(  r*|| j                  k(  rt        || j                  df      }d}nd| d| j                   }t	        |      t        | j                  |      \  }}t        |   | j                  j                  | j                  dddf   |j                  | j                  |      }|dddf   S )zT
        Evaluate the log of the estimated pdf on a provided set of points.
        r   r5   r6   Nr   )r   r#   r$   r   r"   r7   r8   r   r    r9   r)   r:   )	r/   r   r;   r$   r<   r0   r=   r>   r?   s	            r2   logpdfzgaussian_kde.logpdfg  s     A||1;Av!tvv+ $&&!5/s 3004x9 o%.tGd-d3LLNNDLLD1HHdllL2 ad|rA   c                 X   t        j                  |      }t        j                  |j                  t         j                        sd}t        |      t        | j                        }|j                         }|||dk     z   ||dk  <   t        t        j                  |            t        |      k7  rd}t        |      |dk  ||k\  z  }t        j                  |      rd||    d| d}t        |      | j                  |   }| j                  }t        || j                         |      S )a)  Return a marginal KDE distribution

        Parameters
        ----------
        dimensions : int or 1-d array_like
            The dimensions of the multivariate distribution corresponding
            with the marginal variables, that is, the indices of the dimensions
            that are being retained. The other dimensions are marginalized out.

        Returns
        -------
        marginal_kde : gaussian_kde
            An object representing the marginal distribution.

        Notes
        -----
        .. versionadded:: 1.10.0

        zaElements of `dimensions` must be integers - the indices of the marginal variables being retained.r   z,All elements of `dimensions` must be unique.zDimensions z# are invalid for a distribution in z dimensions.)r   r)   )rH   r   
issubdtypedtypeintegerr"   r+   r    copyuniqueanyr)   r   r   )	r/   
dimensionsdimsr0   r%   original_dims	i_invalidr    r)   s	            r2   marginalzgaussian_kde.marginal  s   * }}Z(}}TZZ4?CS/!		T$(^+TAXryy3t9,ACS/!AX$!),	66) y!9 : ;,,-3l<CS/!,,t$,,Gt/E/E/G$+- 	-rA   c                     	 | j                   S # t        $ r6 t        | j                        | j                  z  | _         | j                   cY S w xY wr   )r(   AttributeErrorr   r%   r   s    r2   r)   zgaussian_kde.weights  sB    	!==  	! L/DM== 	!s    <AAc                     	 | j                   S # t        $ r/ dt        | j                  dz        z  | _         | j                   cY S w xY w)Nr   r   )r,   r   r   r)   r   s    r2   rr   zgaussian_kde.neff  sC    	:: 	3t||Q//DJ::	s    5AA)NNr   )__name__
__module____qualname____doc__r3   r@   __call__rS   r\   rg   rn   rz   r   r   r   r-   r   propertyr   r   r   r   r)   rr   r   rA   r2   r   r   (   s    Zv$1L&P H3j!FB0d!F0A &! =#~@$ 	B 	B
 0/-b ! !  rA   c                     t        j                  | |      }t        j                  |      j                  }|dk(  rd}||fS |dk(  rd}||fS |dv rd}||fS t	        | d|       )z
    Calculates the output dtype and the "spec" (=C type name).

    This was necessary in order to deal with the fused types in the Cython
    routine `gaussian_kernel_estimate`. See gh-10824 for details.
    r}   r'      double)      zlong doublez has unexpected item size: )rH   common_typer   itemsizer"   )r8   r;   r=   r   r>   s        r2   r7   r7     s     >>*f5Lxx%..H1}  
Q  
X	 	 . ;H:F 	rA   ) ra   scipyr   r   scipy._lib._utilr   numpyr   r   r   r	   r
   r   r   r   r   r   r   r   r   r   r   r   rH    r   _statsr   r   __all__r   r7   r   rA   r2   <module>r      sT   *  " /       J 
V
 V
rrA   