
    tKg<                       d Z ddlmZ ddlZddlZddlmZ ddlm	Z	m
Z
 ddlmZ dd	gZ e	d
 d dd dd      	 	 	 d	 	 	 	 	 	 	 dd       ZddZ e	d dd e      ddddd	 	 	 	 	 	 	 	 	 	 	 d d       Zd Zd Zd Zd Zd Zy)!z5
Created on Fri Apr  2 09:06:05 2021

@author: matth
    )annotationsN)special   )_axis_nan_policy_factory_broadcast_arrays)array_namespaceentropydifferential_entropyc                    | S N xs    X/home/alanp/www/video.onchill/myenv/lib/python3.12/site-packages/scipy/stats/_entropy.py<lambda>r          a    c                    d| v r| d   dS dS )Nqk   r   r   )kwgss    r   r   r      s!    dltDz5 		r   c                    | fS r   r   r   s    r   r   r      s    A4r   T)	n_samples	n_outputsresult_to_tuplepaired	too_smallc                R   ||dk  rt        d      |t        |       nt        | |      }|j                  |       } t        j                  d      5  d| z  |j                  | |d      z  } ddd       |t        j                  |       }n`|j                  |      }t        | |fd|	      \  } }t        |d      }d|z   |j
                  |fi |z  }t        j                  | |      }|j                  ||
      }||t        j                  |      z  }|S # 1 sw Y   xY w)a  
    Calculate the Shannon entropy/relative entropy of given distribution(s).

    If only probabilities `pk` are given, the Shannon entropy is calculated as
    ``H = -sum(pk * log(pk))``.

    If `qk` is not None, then compute the relative entropy
    ``D = sum(pk * log(pk / qk))``. This quantity is also known
    as the Kullback-Leibler divergence.

    This routine will normalize `pk` and `qk` if they don't sum to 1.

    Parameters
    ----------
    pk : array_like
        Defines the (discrete) distribution. Along each axis-slice of ``pk``,
        element ``i`` is the  (possibly unnormalized) probability of event
        ``i``.
    qk : array_like, optional
        Sequence against which the relative entropy is computed. Should be in
        the same format as `pk`.
    base : float, optional
        The logarithmic base to use, defaults to ``e`` (natural logarithm).
    axis : int, optional
        The axis along which the entropy is calculated. Default is 0.

    Returns
    -------
    S : {float, array_like}
        The calculated entropy.

    Notes
    -----
    Informally, the Shannon entropy quantifies the expected uncertainty
    inherent in the possible outcomes of a discrete random variable.
    For example,
    if messages consisting of sequences of symbols from a set are to be
    encoded and transmitted over a noiseless channel, then the Shannon entropy
    ``H(pk)`` gives a tight lower bound for the average number of units of
    information needed per symbol if the symbols occur with frequencies
    governed by the discrete distribution `pk` [1]_. The choice of base
    determines the choice of units; e.g., ``e`` for nats, ``2`` for bits, etc.

    The relative entropy, ``D(pk|qk)``, quantifies the increase in the average
    number of units of information needed per symbol if the encoding is
    optimized for the probability distribution `qk` instead of the true
    distribution `pk`. Informally, the relative entropy quantifies the expected
    excess in surprise experienced if one believes the true distribution is
    `qk` when it is actually `pk`.

    A related quantity, the cross entropy ``CE(pk, qk)``, satisfies the
    equation ``CE(pk, qk) = H(pk) + D(pk|qk)`` and can also be calculated with
    the formula ``CE = -sum(pk * log(qk))``. It gives the average
    number of units of information needed per symbol if an encoding is
    optimized for the probability distribution `qk` when the true distribution
    is `pk`. It is not computed directly by `entropy`, but it can be computed
    using two calls to the function (see Examples).

    See [2]_ for more information.

    References
    ----------
    .. [1] Shannon, C.E. (1948), A Mathematical Theory of Communication.
           Bell System Technical Journal, 27: 379-423.
           https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
    .. [2] Thomas M. Cover and Joy A. Thomas. 2006. Elements of Information
           Theory (Wiley Series in Telecommunications and Signal Processing).
           Wiley-Interscience, USA.


    Examples
    --------
    The outcome of a fair coin is the most uncertain:

    >>> import numpy as np
    >>> from scipy.stats import entropy
    >>> base = 2  # work in units of bits
    >>> pk = np.array([1/2, 1/2])  # fair coin
    >>> H = entropy(pk, base=base)
    >>> H
    1.0
    >>> H == -np.sum(pk * np.log(pk)) / np.log(base)
    True

    The outcome of a biased coin is less uncertain:

    >>> qk = np.array([9/10, 1/10])  # biased coin
    >>> entropy(qk, base=base)
    0.46899559358928117

    The relative entropy between the fair coin and biased coin is calculated
    as:

    >>> D = entropy(pk, qk, base=base)
    >>> D
    0.7369655941662062
    >>> D == np.sum(pk * np.log(pk/qk)) / np.log(base)
    True

    The cross entropy can be calculated as the sum of the entropy and
    relative entropy`:

    >>> CE = entropy(pk, base=base) + entropy(pk, qk, base=base)
    >>> CE
    1.736965594166206
    >>> CE == -np.sum(pk * np.log(qk)) / np.log(base)
    True

    Nr   +`base` must be a positive number or `None`.ignore)invalidg      ?Taxiskeepdims)r$   xpr$   )
ValueErrorr   asarraynperrstatesumr   entrr   dictrel_entrmathlog)pkr   baser$   r&   vec
sum_kwargsSs           r   r	   r	      s   v DAIFGG "
	B0GB	BB	X	&VbffRdTf:: 
'	zll2ZZ^"B8$2>Btd3
VfbffR.:..r2&
sA	TXXd^H 
'	&s   DD&c                    | d   }|j                   |   }|j                  dt        j                  t        j                  |      dz               }dd|z  cxk  r|k  sy yy)Nr   window_length      ?r   TF)shapegetr0   floorsqrt)sampleskwargsr$   valuesnr8   s         r   "_differential_entropy_is_too_smallrB      sb    QZFTAJJ#zz$))A,*<=?MM!%A% &r   c                    | S r   r   r   s    r   r   r      r   r   c                    | fS r   r   r   s    r   r   r      s    r   )r   r   r   auto)r8   r3   r$   methodc               x   t        j                  |       } t        j                  | |d      } | j                  d   }|+t	        j
                  t	        j                  |      dz         }dd|z  cxk  r|k  sn t        d| d| d      ||dk  rt        d      t        j                  | d	      }t        t        t        t        t        d
}|j                         }||vrdt        |       }t        |      |dk(  r|dk  rd}n
|dk  rd}nd} ||   ||      }	||	t        j                  |      z  }	|	S )aV  Given a sample of a distribution, estimate the differential entropy.

    Several estimation methods are available using the `method` parameter. By
    default, a method is selected based the size of the sample.

    Parameters
    ----------
    values : sequence
        Sample from a continuous distribution.
    window_length : int, optional
        Window length for computing Vasicek estimate. Must be an integer
        between 1 and half of the sample size. If ``None`` (the default), it
        uses the heuristic value

        .. math::
            \left \lfloor \sqrt{n} + 0.5 \right \rfloor

        where :math:`n` is the sample size. This heuristic was originally
        proposed in [2]_ and has become common in the literature.
    base : float, optional
        The logarithmic base to use, defaults to ``e`` (natural logarithm).
    axis : int, optional
        The axis along which the differential entropy is calculated.
        Default is 0.
    method : {'vasicek', 'van es', 'ebrahimi', 'correa', 'auto'}, optional
        The method used to estimate the differential entropy from the sample.
        Default is ``'auto'``.  See Notes for more information.

    Returns
    -------
    entropy : float
        The calculated differential entropy.

    Notes
    -----
    This function will converge to the true differential entropy in the limit

    .. math::
        n \to \infty, \quad m \to \infty, \quad \frac{m}{n} \to 0

    The optimal choice of ``window_length`` for a given sample size depends on
    the (unknown) distribution. Typically, the smoother the density of the
    distribution, the larger the optimal value of ``window_length`` [1]_.

    The following options are available for the `method` parameter.

    * ``'vasicek'`` uses the estimator presented in [1]_. This is
      one of the first and most influential estimators of differential entropy.
    * ``'van es'`` uses the bias-corrected estimator presented in [3]_, which
      is not only consistent but, under some conditions, asymptotically normal.
    * ``'ebrahimi'`` uses an estimator presented in [4]_, which was shown
      in simulation to have smaller bias and mean squared error than
      the Vasicek estimator.
    * ``'correa'`` uses the estimator presented in [5]_ based on local linear
      regression. In a simulation study, it had consistently smaller mean
      square error than the Vasiceck estimator, but it is more expensive to
      compute.
    * ``'auto'`` selects the method automatically (default). Currently,
      this selects ``'van es'`` for very small samples (<10), ``'ebrahimi'``
      for moderate sample sizes (11-1000), and ``'vasicek'`` for larger
      samples, but this behavior is subject to change in future versions.

    All estimators are implemented as described in [6]_.

    References
    ----------
    .. [1] Vasicek, O. (1976). A test for normality based on sample entropy.
           Journal of the Royal Statistical Society:
           Series B (Methodological), 38(1), 54-59.
    .. [2] Crzcgorzewski, P., & Wirczorkowski, R. (1999). Entropy-based
           goodness-of-fit test for exponentiality. Communications in
           Statistics-Theory and Methods, 28(5), 1183-1202.
    .. [3] Van Es, B. (1992). Estimating functionals related to a density by a
           class of statistics based on spacings. Scandinavian Journal of
           Statistics, 61-72.
    .. [4] Ebrahimi, N., Pflughoeft, K., & Soofi, E. S. (1994). Two measures
           of sample entropy. Statistics & Probability Letters, 20(3), 225-234.
    .. [5] Correa, J. C. (1995). A new estimator of entropy. Communications
           in Statistics-Theory and Methods, 24(10), 2439-2449.
    .. [6] Noughabi, H. A. (2015). Entropy Estimation Using Numerical Methods.
           Annals of Data Science, 2(2), 231-241.
           https://link.springer.com/article/10.1007/s40745-015-0045-9

    Examples
    --------
    >>> import numpy as np
    >>> from scipy.stats import differential_entropy, norm

    Entropy of a standard normal distribution:

    >>> rng = np.random.default_rng()
    >>> values = rng.standard_normal(100)
    >>> differential_entropy(values)
    1.3407817436640392

    Compare with the true entropy:

    >>> float(norm.entropy())
    1.4189385332046727

    For several sample sizes between 5 and 1000, compare the accuracy of
    the ``'vasicek'``, ``'van es'``, and ``'ebrahimi'`` methods. Specifically,
    compare the root mean squared error (over 1000 trials) between the estimate
    and the true differential entropy of the distribution.

    >>> from scipy import stats
    >>> import matplotlib.pyplot as plt
    >>>
    >>>
    >>> def rmse(res, expected):
    ...     '''Root mean squared error'''
    ...     return np.sqrt(np.mean((res - expected)**2))
    >>>
    >>>
    >>> a, b = np.log10(5), np.log10(1000)
    >>> ns = np.round(np.logspace(a, b, 10)).astype(int)
    >>> reps = 1000  # number of repetitions for each sample size
    >>> expected = stats.expon.entropy()
    >>>
    >>> method_errors = {'vasicek': [], 'van es': [], 'ebrahimi': []}
    >>> for method in method_errors:
    ...     for n in ns:
    ...        rvs = stats.expon.rvs(size=(reps, n), random_state=rng)
    ...        res = stats.differential_entropy(rvs, method=method, axis=-1)
    ...        error = rmse(res, expected)
    ...        method_errors[method].append(error)
    >>>
    >>> for method, errors in method_errors.items():
    ...     plt.loglog(ns, errors, label=method)
    >>>
    >>> plt.legend()
    >>> plt.xlabel('sample size')
    >>> plt.ylabel('RMSE (1000 trials)')
    >>> plt.title('Entropy Estimator Error (Exponential Distribution)')

    r   r9   r   zWindow length (z7) must be positive and less than half the sample size (z).r   r    r'   )vasicekvan escorreaebrahimirE   z`method` must be one of rE   
   rI   i  rK   rH   )r*   r)   moveaxisr:   r0   r<   r=   r(   sort_vasicek_entropy_van_es_entropy_correa_entropy_ebrahimi_entropylowersetr1   )
r@   r8   r3   r$   rF   rA   sorted_datamethodsmessageress
             r   r
   r
      sO   h ZZF[[r*FRA

499Q<##56M!%A%m_ -**+B0
 	

 DAIFGG''&r*K*((,'	)G
 \\^FW,S\N;!!7F$YFF
'&/+}
5Crvvd|Jr   c                    t        j                  | j                        }||d<   t        j                  | ddgf   |      }t        j                  | ddgf   |      }t        j                  || |fd      S )z9Pad the data for computing the rolling window difference.r   .r   r'   )r*   arrayr:   broadcast_toconcatenate)Xmr:   XlXrs        r   _pad_along_last_axisra   l  sj     HHQWWEE"I	38e	,B	39u	-B>>2q"+B//r   c                    | j                   d   }t        | |      } | dd|z  df   | ddd|z  f   z
  }t        j                  |d|z  z  |z        }t        j                  |d      S )z:Compute the Vasicek estimator as described in [6] Eq. 1.3.r   .r   Nr'   )r:   ra   r*   r1   mean)r]   r^   rA   differenceslogss        r   rO   rO   v  sp    	AQ"ACQK.1S)BF)^#44K66!QqS'K'(D774b!!r   c                   | j                   d   }| d|df   | dd| f   z
  }d||z
  z  t        j                  t        j                  |dz   |z  |z        d      z  }t        j                  ||dz         }|t        j                  d|z        z   t        j                  |      z   t        j                  |dz         z
  S )z1Compute the van Es estimator as described in [6].r   .Nr   r'   )r:   r*   r,   r1   arange)r]   r^   rA   
differenceterm1ks         r   rP   rP     s     	
A37aSqbSk)JqsGbffRVVQqS!Gj$89CCE
		!QqSA266!A#;*RVVAaC[88r   c                   | j                   d   }t        | |      } | dd|z  df   | ddd|z  f   z
  }t        j                  d|dz         j	                  t
              }t        j                  |      dz  }d|||k     dz
  |z  z   |||k  <   d|||||z
  dz   k\     z
  |z  z   ||||z
  dz   k\  <   t        j                  ||z  ||z  z        }t        j                  |d      S )z3Compute the Ebrahimi estimator as described in [6].r   .r   Nrc   r   r'   )	r:   ra   r*   rh   astypefloat	ones_liker1   rd   )r]   r^   rA   re   icirf   s          r   rR   rR     s     	
AQ"ACQK.1S)BF)^#44K
		!QqS  'A	a	BaQi!mQ&&BqAvJa!A1QJ-/22BqAEAI~66!k/R!V,-D774b!!r   c                   | j                   d   }t        | |      } t        j                  d|dz         }t        j                  | |dz         dddf   }||z   }||z   dz
  }t        j                  | d|f   dd      }| d|f   |z
  }t        j
                  ||z  d      }	|t        j
                  |d	z  d      z  }
t        j                  t        j                  |	|
z        d       S )
z1Compute the Correa estimator as described in [6].r   r   N.rc   Tr#   r'   r   )r:   ra   r*   rh   rd   r,   r1   )r]   r^   rA   rp   djjj0Xibarri   numdens              r   rQ   rQ     s     	
AQ"A
		!QqSA	A2qs	AtG	$B	BA	
QBGGAc2gJR$7E37e#J
&&BR
(C
BFF:q=r*
*CGGBFF3s7O"---r   )NNr   )
r2   np.typing.ArrayLiker   znp.typing.ArrayLike | Noner3   float | Noner$   intreturnnp.number | np.ndarray)r   )r@   ry   r8   z
int | Noner3   rz   r$   r{   rF   strr|   r}   )__doc__
__future__r   r0   numpyr*   scipyr   _axis_nan_policyr   r   scipy._lib._array_apir   __all__r	   rB   r
   ra   rO   rP   rR   rQ   r   r   r   <module>r      s   #    I 1,
-   .2!%E*EE E (	EEP 1n0 !%yy y 	y
 y y y	yx0"9"".r   