
    tKg                     (    d Z ddlZddlmZ dgZd Zy)zVSome more special functions which may be useful for multivariate statistical
analysis.    N)gammalnmultigammalnc                    t        j                  |       } t        j                  |      rt        j                  |      |k7  rt	        d      t        j
                  | d|dz
  z  k        rt	        d| ddd|dz
  z  dd      ||dz
  z  dz  t        j                  t         j                        z  }|t        j                  t        t        d|dz         D cg c]  }| |d	z
  d
z  z
   c}      d      z  }|S c c}w )a  Returns the log of multivariate gamma, also sometimes called the
    generalized gamma.

    Parameters
    ----------
    a : ndarray
        The multivariate gamma is computed for each item of `a`.
    d : int
        The dimension of the space of integration.

    Returns
    -------
    res : ndarray
        The values of the log multivariate gamma at the given points `a`.

    Notes
    -----
    The formal definition of the multivariate gamma of dimension d for a real
    `a` is

    .. math::

        \Gamma_d(a) = \int_{A>0} e^{-tr(A)} |A|^{a - (d+1)/2} dA

    with the condition :math:`a > (d-1)/2`, and :math:`A > 0` being the set of
    all the positive definite matrices of dimension `d`.  Note that `a` is a
    scalar: the integrand only is multivariate, the argument is not (the
    function is defined over a subset of the real set).

    This can be proven to be equal to the much friendlier equation

    .. math::

        \Gamma_d(a) = \pi^{d(d-1)/4} \prod_{i=1}^{d} \Gamma(a - (i-1)/2).

    References
    ----------
    R. J. Muirhead, Aspects of multivariate statistical theory (Wiley Series in
    probability and mathematical statistics).

    Examples
    --------
    >>> import numpy as np
    >>> from scipy.special import multigammaln, gammaln
    >>> a = 23.5
    >>> d = 10
    >>> multigammaln(a, d)
    454.1488605074416

    Verify that the result agrees with the logarithm of the equation
    shown above:

    >>> d*(d-1)/4*np.log(np.pi) + gammaln(a - 0.5*np.arange(0, d)).sum()
    454.1488605074416
    z*d should be a positive integer (dimension)g      ?   zcondition a (fz) > 0.5 * (d-1) (z	) not metg      ?g      ?   r   )axis)npasarrayisscalarfloor
ValueErroranylogpisumloggamrange)adresjs       ^/home/alanp/www/video.onchill/myenv/lib/python3.12/site-packages/scipy/special/_spfun_stats.pyr   r   *   s    p 	

1A;;q>bhhqkQ.EFF	vva3!a%= !=1->sac{1oYWXX!9trvvbee}
,C266&E!QqSMBMq1Bz>MBC!LLCJ Cs   C>)__doc__numpyr
   scipy.specialr   r   __all__r        r   <module>r       s#   @  + 
@r   