
    tKg*              	       `    d dl mZmZmZmZ d dlmZ d dlmZ ddl	m
Z
 dgZddd	dddd
d
ddZy)    )innerzerosinffinfo)norm)sqrt   )make_systemminresNgh㈵>g        F)rtolshiftmaxiterMcallbackshowcheckc                
   t        | |||      \  } }}
}}| j                  }|j                  }d}d}| j                  d   }|d|z  }g d}|rDt        |dz          t        |d|dd	|d
z          t        |d|dd|dz          t                d}d}d}d}d}d}|
j                  }t        |      j                  }||j                         }n|| |
z  z
  } ||      }t        ||      }|dk  rt        d      |dk(  r
 ||
      dfS t        |      }|dk(  r|}
 ||
      dfS t        |      }|	r ||      } ||      }t        ||      } t        ||      }!t        | |!z
        }"| |z   |dz  z  }#|"|#kD  rt        d       ||      }t        ||      } t        ||      }!t        | |!z
        }"| |z   |dz  z  }#|"|#kD  rt        d      d}$|}%d}&d}'|}(|})|}*d}+d},d}-t        |      j                  }.d}/d}0t        ||      }t        ||      }1|}|rt                t                t        d       ||k  r|dz  }d|%z  } | |z  }2 ||2      }|||2z  z
  }|dk\  r||%|$z  |z  z
  }t        |2|      }3||3|%z  |z  z
  }|}|} ||      }|%}$t        ||      }%|%dk  rt        d      t        |%      }%|,|3dz  |$dz  z   |%dz  z   z  },|dk(  r|%|z  d|z  k  rd}|'}4|/|&z  |0|3z  z   }5|0|&z  |/|3z  z
  }6|0|%z  }'|/ |%z  }&t        |6|&g      }7|)|7z  }8t        |6|%g      }9t        |9|      }9|6|9z  }/|%|9z  }0|/|)z  }:|0|)z  })d|9z  };|1}<|}1|2|4|<z  z
  |5|1z  z
  |;z  }|
|:|z  z   }
t        |-|9      }-t        |.|9      }.|*|9z  }"|+|5|"z  z
  }*|' |"z  }+t        |,      }t        |
      }||z  }#||z  |z  }=||z  |z  }>|6}?|?dk(  r|#}?|)}(|(}|dk(  s|dk(  rt         }@n|||z  z  }@|dk(  rt         }An|7|z  }A|-|.z  }|dk(  r>d@z   }BdAz   }C|Cdk  rd}Bdk  rd}||k\  rd}|d|z  k\  rd}|=|k\  rd}A|k  rd}@|k  rd}d}D|dk  rd}D|dk  rd}D||dz
  k\  rd}D|dz  dk(  rd}D|(d|=z  k  rd}D|(d|>z  k  rd}D|d |z  k  rd}D|dk7  rd}D|rLDrJ|d!d"|
d   d#d"@d$}Ed"Ad$}Fd"|d%d"|d%d"|6|z  d%}Gt        |E|Fz   |Gz          |dz  dk(  r
t                | ||
       |dk7  rn||k  r|rrt                t        |d&|dd'|d(z          t        |d)|d*d+|d*z          t        |d,|d*d-|d*z          t        |d.8d*z          t        |||dz      z          |dk(  r|}Hnd}H ||
      HfS )/a  
    Use MINimum RESidual iteration to solve Ax=b

    MINRES minimizes norm(Ax - b) for a real symmetric matrix A.  Unlike
    the Conjugate Gradient method, A can be indefinite or singular.

    If shift != 0 then the method solves (A - shift*I)x = b

    Parameters
    ----------
    A : {sparse matrix, ndarray, LinearOperator}
        The real symmetric N-by-N matrix of the linear system
        Alternatively, ``A`` can be a linear operator which can
        produce ``Ax`` using, e.g.,
        ``scipy.sparse.linalg.LinearOperator``.
    b : ndarray
        Right hand side of the linear system. Has shape (N,) or (N,1).

    Returns
    -------
    x : ndarray
        The converged solution.
    info : integer
        Provides convergence information:
            0  : successful exit
            >0 : convergence to tolerance not achieved, number of iterations
            <0 : illegal input or breakdown

    Other Parameters
    ----------------
    x0 : ndarray
        Starting guess for the solution.
    shift : float
        Value to apply to the system ``(A - shift * I)x = b``. Default is 0.
    rtol : float
        Tolerance to achieve. The algorithm terminates when the relative
        residual is below ``rtol``.
    maxiter : integer
        Maximum number of iterations.  Iteration will stop after maxiter
        steps even if the specified tolerance has not been achieved.
    M : {sparse matrix, ndarray, LinearOperator}
        Preconditioner for A.  The preconditioner should approximate the
        inverse of A.  Effective preconditioning dramatically improves the
        rate of convergence, which implies that fewer iterations are needed
        to reach a given error tolerance.
    callback : function
        User-supplied function to call after each iteration.  It is called
        as callback(xk), where xk is the current solution vector.
    show : bool
        If ``True``, print out a summary and metrics related to the solution
        during iterations. Default is ``False``.
    check : bool
        If ``True``, run additional input validation to check that `A` and
        `M` (if specified) are symmetric. Default is ``False``.

    Examples
    --------
    >>> import numpy as np
    >>> from scipy.sparse import csc_matrix
    >>> from scipy.sparse.linalg import minres
    >>> A = csc_matrix([[3, 2, 0], [1, -1, 0], [0, 5, 1]], dtype=float)
    >>> A = A + A.T
    >>> b = np.array([2, 4, -1], dtype=float)
    >>> x, exitCode = minres(A, b)
    >>> print(exitCode)            # 0 indicates successful convergence
    0
    >>> np.allclose(A.dot(x), b)
    True

    References
    ----------
    Solution of sparse indefinite systems of linear equations,
        C. C. Paige and M. A. Saunders (1975),
        SIAM J. Numer. Anal. 12(4), pp. 617-629.
        https://web.stanford.edu/group/SOL/software/minres/

    This file is a translation of the following MATLAB implementation:
        https://web.stanford.edu/group/SOL/software/minres/minres-matlab.zip

    zEnter minres.   zExit  minres.   r      )z3 beta2 = 0.  If M = I, b and x are eigenvectors    z/ beta1 = 0.  The exact solution is x0          z3 A solution to Ax = b was found, given rtol        z3 A least-squares solution was found, given rtol    z3 Reasonable accuracy achieved, given eps           z3 x has converged to an eigenvector                 z3 acond has exceeded 0.1/eps                        z3 The iteration limit was reached                   z3 A  does not define a symmetric matrix             z3 M  does not define a symmetric matrix             z3 M  does not define a pos-def preconditioner       zSolution of symmetric Ax = bz
n      =  3gz     shift  =  z23.14ez
itnlim =  z     rtol   =  z11.2ezindefinite preconditionergUUUUUU?znon-symmetric matrixznon-symmetric preconditioner)dtypezD   Itn     x(1)     Compatible    LS       norm(A)  cond(A) gbar/|A|r	   g      ?   
      g?      F(   Tg{Gz?6g z12.5ez10.3ez8.1ez istop   =  z               itn   =5gz Anorm   =  z12.4ez      Acond =  z rnorm   =  z      ynorm =  z Arnorm  =  )r
   matvecshapeprintr   r   epscopyr   
ValueErrorr   r   absmaxr   minr   )IAbx0r   r   r   r   r   r   r   xpostprocessr!   psolvefirstlastnmsgistopitnAnormAcondrnormynormxtyper$   r1ybeta1bnormwr2stzepsaoldbbetadbarepslnqrnormphibarrhs1rhs2tnorm2gmaxgmincssnw2valfaoldepsdeltagbarrootArnormgammaphidenomw1epsxepsrdiagtest1test2t1t2prntstr1str2str3infosI                                                                            f/home/alanp/www/video.onchill/myenv/lib/python3.12/site-packages/scipy/sparse/linalg/_isolve/minres.pyr   r   
   sl   d *!QA6Aq!QXXFXXFED	
Aa%
CC e445e
1R&f~FFGe
72,od5\JJKE
CEEEEGGE
,

C 
zVVX1Wr
A"aLEqy455	!A""GEzA""KE 1IAY!AJ!BKAJC3>)t8344 AY!AJ"RLAJC3>)t8;<< DDDEFFDDFD<D	B	
BauA	q	B	BTU
-qHaC1I	M!8T$YN"AQqzdB2JR{!8344Dz$'D!G#dAg--!8EzRV# T	BI%Dy29$T	td{T4L!$ dD\"E3E\E\6kf E	]U2X%.AI 445LeAg~wqy VQs{u}s"u}t#19DA:!EU5[)EA:E5LE T	
 A:UBUBQwQwg~Cu} }} 7D"9D'"*D8q=DRWDRWDDHDA:DD"XQqtEl!E%=9DuUm$DuTl!E$<qeD0ABD$+$%Rx1}QKA:u -x d|E":-CC8LLMd|E%=e}MMNd|E%=e}MMNd|F5>223dSq\!"zN4      )N)numpyr   r   r   r   numpy.linalgr   mathr   utilsr
   __all__r    rk   rj   <module>rr      s6    * *   *j!$c4DuEj!rk   