
    tKg%=                     b    d Z dgZddlmZmZmZmZ ddlmZ ddl	m
Z
 ddlmZ ddlmZ 	 	 d
d	Zy)a  
Copyright (C) 2010 David Fong and Michael Saunders

LSMR uses an iterative method.

07 Jun 2010: Documentation updated
03 Jun 2010: First release version in Python

David Chin-lung Fong            clfong@stanford.edu
Institute for Computational and Mathematical Engineering
Stanford University

Michael Saunders                saunders@stanford.edu
Systems Optimization Laboratory
Dept of MS&E, Stanford University.

lsmr    )zerosinf
atleast_1dresult_type)norm)sqrt)aslinearoperator)
_sym_orthoNc	                 $   t        |       } t        |      }|j                  dkD  r|j                         }d}	d}
d}d}d}| j                  \  }}t        ||g      }||}|t        | |t              }nt        | ||t              }|r^t        d       t        d       t        d	| d
| d       t        d|z         t        d|dd|dd       t        d|dd|dd       |}t        |      }|t        ||      }|j                         }n8t        |j                               }|| j                  |      z
  }t        |      }|dkD  r%d|z  |z  }| j                  |      }t        |      }nt        ||      }d}|dkD  rd|z  |z  }d}||z  }|}d}d}d}d}|j                         }t        ||      } |}!d}"d}#d}$d}%d}&d}'||z  }(d})d}*t        |(      }+d},d}-d}.d}/|dkD  rd|z  }/|}0||z  }1|1dk(  r|rt        |	d          ||.||0|1|+|,|-fS |dk(  rd|d<   ||.||0|1|+|,|-fS |r[t        d       t        |
|       d}2||z  }3|dd|d   d}4d|0dd|1d}5d|2dd|3d}6t        dj                  |4|5|6g             ||k  r|dz   }|| z  }|| j                  |      z  }t        |      }|dkD  r:|d|z  z  }|| z  }|| j                  |      z  }t        |      }|dkD  r|d|z  z  }t!        ||      \  }7}8}9|}:t!        |9|      \  };}<}|<|z  }=|;|z  }|}>|&}?||z  }@||z  }At!        ||z  |=      \  }}}||z  }&| |z  }| |@|z  |:|>z  z   z  } | |z  } ||&||z  z  | z  z  }||=|z   z  }||z  }|7|!z  }B|8 |!z  }C|;|Bz  }D|< |Bz  }!|%}Et!        |#|@      \  }F}G}H|G|z  }%|F|z  }#|G |"z  |F|Dz  z   }"|?|E|$z  z
  |Hz  }$|&|%|$z  z
  |#z  }I|'|C|Cz  z   }'t        |'|"|Iz
  dz  z   |!|!z  z         }0|(||z  z   }(t        |(      }+|(||z  z   }(t#        |)|>      })|dkD  rt        |*|>      }*t#        |)A      t        |*|A      z  },t%        |      }1t        |      }-|0|z  }2|+|0z  dk7  r	|1|+|0z  z  }3nt&        }3d|,z  }J|2d|+|-z  |z  z   z  }K|||+z  |-z  |z  z   }L||k\  rd}.dJz   dk  rd}.d|3z   dk  rd}.dKz   dk  rd }.J|/k  rd!}.|3|k  rd}.|2Lk  rd}.|r|d"k  s2|d#k  s-||d#z
  k\  s%|d#z  dk(  sJd$|/z  k  s|3d$|z  k  s|2d$Lz  k  s|.dk7  rk||k\  rd}t        d       t        |
|       |dz   }|dd|d   d}4d|0dd|1d}5d|2dd|3d}6d|+dd|,d}Mt        dj                  |4|5|6|Mg             |.dkD  rn||k  r|rt        d       t        d%       t        |	|.          t        d&|.dd'|0d       t        d(|+dd)|1d       t        d*|dd+|,d       t        d,|-z         t        45       t        6M       ||.||0|1|+|,|-fS )-a  Iterative solver for least-squares problems.

    lsmr solves the system of linear equations ``Ax = b``. If the system
    is inconsistent, it solves the least-squares problem ``min ||b - Ax||_2``.
    ``A`` is a rectangular matrix of dimension m-by-n, where all cases are
    allowed: m = n, m > n, or m < n. ``b`` is a vector of length m.
    The matrix A may be dense or sparse (usually sparse).

    Parameters
    ----------
    A : {sparse matrix, ndarray, LinearOperator}
        Matrix A in the linear system.
        Alternatively, ``A`` can be a linear operator which can
        produce ``Ax`` and ``A^H x`` using, e.g.,
        ``scipy.sparse.linalg.LinearOperator``.
    b : array_like, shape (m,)
        Vector ``b`` in the linear system.
    damp : float
        Damping factor for regularized least-squares. `lsmr` solves
        the regularized least-squares problem::

         min ||(b) - (  A   )x||
             ||(0)   (damp*I) ||_2

        where damp is a scalar.  If damp is None or 0, the system
        is solved without regularization. Default is 0.
    atol, btol : float, optional
        Stopping tolerances. `lsmr` continues iterations until a
        certain backward error estimate is smaller than some quantity
        depending on atol and btol.  Let ``r = b - Ax`` be the
        residual vector for the current approximate solution ``x``.
        If ``Ax = b`` seems to be consistent, `lsmr` terminates
        when ``norm(r) <= atol * norm(A) * norm(x) + btol * norm(b)``.
        Otherwise, `lsmr` terminates when ``norm(A^H r) <=
        atol * norm(A) * norm(r)``.  If both tolerances are 1.0e-6 (default),
        the final ``norm(r)`` should be accurate to about 6
        digits. (The final ``x`` will usually have fewer correct digits,
        depending on ``cond(A)`` and the size of LAMBDA.)  If `atol`
        or `btol` is None, a default value of 1.0e-6 will be used.
        Ideally, they should be estimates of the relative error in the
        entries of ``A`` and ``b`` respectively.  For example, if the entries
        of ``A`` have 7 correct digits, set ``atol = 1e-7``. This prevents
        the algorithm from doing unnecessary work beyond the
        uncertainty of the input data.
    conlim : float, optional
        `lsmr` terminates if an estimate of ``cond(A)`` exceeds
        `conlim`.  For compatible systems ``Ax = b``, conlim could be
        as large as 1.0e+12 (say).  For least-squares problems,
        `conlim` should be less than 1.0e+8. If `conlim` is None, the
        default value is 1e+8.  Maximum precision can be obtained by
        setting ``atol = btol = conlim = 0``, but the number of
        iterations may then be excessive. Default is 1e8.
    maxiter : int, optional
        `lsmr` terminates if the number of iterations reaches
        `maxiter`.  The default is ``maxiter = min(m, n)``.  For
        ill-conditioned systems, a larger value of `maxiter` may be
        needed. Default is False.
    show : bool, optional
        Print iterations logs if ``show=True``. Default is False.
    x0 : array_like, shape (n,), optional
        Initial guess of ``x``, if None zeros are used. Default is None.

        .. versionadded:: 1.0.0

    Returns
    -------
    x : ndarray of float
        Least-square solution returned.
    istop : int
        istop gives the reason for stopping::

          istop   = 0 means x=0 is a solution.  If x0 was given, then x=x0 is a
                      solution.
                  = 1 means x is an approximate solution to A@x = B,
                      according to atol and btol.
                  = 2 means x approximately solves the least-squares problem
                      according to atol.
                  = 3 means COND(A) seems to be greater than CONLIM.
                  = 4 is the same as 1 with atol = btol = eps (machine
                      precision)
                  = 5 is the same as 2 with atol = eps.
                  = 6 is the same as 3 with CONLIM = 1/eps.
                  = 7 means ITN reached maxiter before the other stopping
                      conditions were satisfied.

    itn : int
        Number of iterations used.
    normr : float
        ``norm(b-Ax)``
    normar : float
        ``norm(A^H (b - Ax))``
    norma : float
        ``norm(A)``
    conda : float
        Condition number of A.
    normx : float
        ``norm(x)``

    Notes
    -----

    .. versionadded:: 0.11.0

    References
    ----------
    .. [1] D. C.-L. Fong and M. A. Saunders,
           "LSMR: An iterative algorithm for sparse least-squares problems",
           SIAM J. Sci. Comput., vol. 33, pp. 2950-2971, 2011.
           :arxiv:`1006.0758`
    .. [2] LSMR Software, https://web.stanford.edu/group/SOL/software/lsmr/

    Examples
    --------
    >>> import numpy as np
    >>> from scipy.sparse import csc_matrix
    >>> from scipy.sparse.linalg import lsmr
    >>> A = csc_matrix([[1., 0.], [1., 1.], [0., 1.]], dtype=float)

    The first example has the trivial solution ``[0, 0]``

    >>> b = np.array([0., 0., 0.], dtype=float)
    >>> x, istop, itn, normr = lsmr(A, b)[:4]
    >>> istop
    0
    >>> x
    array([0., 0.])

    The stopping code `istop=0` returned indicates that a vector of zeros was
    found as a solution. The returned solution `x` indeed contains
    ``[0., 0.]``. The next example has a non-trivial solution:

    >>> b = np.array([1., 0., -1.], dtype=float)
    >>> x, istop, itn, normr = lsmr(A, b)[:4]
    >>> istop
    1
    >>> x
    array([ 1., -1.])
    >>> itn
    1
    >>> normr
    4.440892098500627e-16

    As indicated by `istop=1`, `lsmr` found a solution obeying the tolerance
    limits. The given solution ``[1., -1.]`` obviously solves the equation. The
    remaining return values include information about the number of iterations
    (`itn=1`) and the remaining difference of left and right side of the solved
    equation.
    The final example demonstrates the behavior in the case where there is no
    solution for the equation:

    >>> b = np.array([1., 0.01, -1.], dtype=float)
    >>> x, istop, itn, normr = lsmr(A, b)[:4]
    >>> istop
    2
    >>> x
    array([ 1.00333333, -0.99666667])
    >>> A.dot(x)-b
    array([ 0.00333333, -0.00333333,  0.00333333])
    >>> normr
    0.005773502691896255

    `istop` indicates that the system is inconsistent and thus `x` is rather an
    approximate solution to the corresponding least-squares problem. `normr`
    contains the minimal distance that was found.
       )z9The exact solution is x = 0, or x = x0, if x0 was given  z:Ax - b is small enough, given atol, btol                  z:The least-squares solution is good enough, given atol     z:The estimate of cond(Abar) has exceeded conlim            z:Ax - b is small enough for this machine                   z:The least-squares solution is good enough for this machinez:Cond(Abar) seems to be too large for this machine         z:The iteration limit has been reached                      z(   itn      x(1)       norm r    norm Arz% compatible   LS      norm A   cond A   r    z2LSMR            Least-squares solution of  Ax = b
zThe matrix A has z
 rows and z columnszdamp = %20.14e
zatol = z8.2ez                 conlim = 
zbtol = z             maxiter = 8gg}Ô%IT 6gz12.5ez10.3ez  z8.1e                   (   
   g?zLSMR finishedzistop =z    normr =z    normA =z    normAr =zitn   =z    condA =z    normx =%8.1e)r
   r   ndimsqueezeshapeminr   floatprintr   r   copymatvecrmatvecr	   joinr   maxabsr   )NAbdampatolbtolconlimmaxitershowx0msghdg1hdg2pfreqpcountmnminDimdtypeunormbxbetavalphaitnzetabaralphabarrhorhobarcbarsbarhhbarbetaddbetadrhodoldtautildeold
thetatildezetadnormA2maxrbarminrbarnormAcondAnormxistopctolnormrnormartest1test2str1str2str3chatshatalphahatrhooldcsthetanew	rhobaroldzetaoldthetabarrhotemp	betaacute	betacheckbetahatthetatildeold	ctildeold	stildeoldrhotildeoldtaudtest3t1rtolstr4sN                                                                                 d/home/alanp/www/video.onchill/myenv/lib/python3.12/site-packages/scipy/sparse/linalg/_isolve/lsmr.pyr   r      sD   P 	A1AvvzIIKIC 6D2DEF77DAq !Q[F	zAq%(Aq"e,c
CD!!Jqc:; D)*T{"<VDMLMT{"9'"RHI	AGE	z!UOzz|rwwy!OAwaxXNIIaLQ!UOqyY!O CdlGH
CFDD	AE?D FEGKJD	A U]FGGLEEE EDz6zE T\F{#a&M%eVUE5@@z"%eVUE5@@c
dDb1Q4,'5-q/E$<qt-bggtT4()* -Ag 	
eV	QXXa[Aw!8!d(OA$JA1AGEqya%i   *(D9dH x.	1cU7U7 	#:*'s
H=dFg~&7" 	8c>Vi%7899		dcFl#t++	3	Q
 6M	EFN	 i-i
 #,6w,I)	9k'
f$e#i'&99
 !<<KzK//7:	I%%Q%$,**Vf_<= $+%V%%-' gy)7'9-GGW%GW(==
 WQ
 EMaeem,EEE	a%%-%//0dUlU*U22 '>Eu9>Eu9>Er6Q;E D=ED=ED=E RSBYC7R<,?bA5C$J#6t##*)<
U?F#J$%!b1Q4,/5-q7E$<qt55,ad|4bggtT467819o -v c
oc%jbzU4L9:E$<|F4=ABBx{5,78 E*+dDdDeS%u<<    )g        ư>ry   g    חANFN)__doc____all__numpyr   r   r   r   numpy.linalgr   mathr	   scipy.sparse.linalg._interfacer
    scipy.sparse.linalg._isolve.lsqrr   r   r   rx   rw   <module>r      s3   $ ( 5 5   ; 7 7:&*I=rx   