
    tKg+P                         d dl Zd dl mZmZmZmZmZmZmZm	Z	m
Z
mZmZmZmZmZ g dZddZddZ	 	 ddZddZddZdd	Zd
 ZdefdZy)    N)asarrayzerosplacenanmodpiextractlogsqrtexpcossinpolyvalpolyint)sawtoothsquare
gausspulsechirp
sweep_polyunit_impulsec                    t        |       t        |      }} t        || | z
  z         }t        | ||z
  z         } | j                  j                  dv r| j                  j                  }nd}t        | j                  |      }|dkD  |dk  z  }t        ||t               t        | dt        z        }d|z
  ||dz  t        z  k  z  }t        ||      }t        ||      }	t        |||t        |	z  z  dz
         d|z
  d|z
  z  }
t        |
|      }t        |
|      }	t        ||
t        |	dz   z  |z
  t        d|	z
  z  z         |S )a  
    Return a periodic sawtooth or triangle waveform.

    The sawtooth waveform has a period ``2*pi``, rises from -1 to 1 on the
    interval 0 to ``width*2*pi``, then drops from 1 to -1 on the interval
    ``width*2*pi`` to ``2*pi``. `width` must be in the interval [0, 1].

    Note that this is not band-limited.  It produces an infinite number
    of harmonics, which are aliased back and forth across the frequency
    spectrum.

    Parameters
    ----------
    t : array_like
        Time.
    width : array_like, optional
        Width of the rising ramp as a proportion of the total cycle.
        Default is 1, producing a rising ramp, while 0 produces a falling
        ramp.  `width` = 0.5 produces a triangle wave.
        If an array, causes wave shape to change over time, and must be the
        same length as t.

    Returns
    -------
    y : ndarray
        Output array containing the sawtooth waveform.

    Examples
    --------
    A 5 Hz waveform sampled at 500 Hz for 1 second:

    >>> import numpy as np
    >>> from scipy import signal
    >>> import matplotlib.pyplot as plt
    >>> t = np.linspace(0, 1, 500)
    >>> plt.plot(t, signal.sawtooth(2 * np.pi * 5 * t))

    fFdDd   r      )
r   dtypecharr   shaper   r   r   r   r	   )twidthwytypeymask1tmodmask2tsubwsubmask3s              [/home/alanp/www/video.onchill/myenv/lib/python3.12/site-packages/scipy/signal/_waveforms.pyr   r      sC   N 1:wu~qAQUAQUAww||xagguA Uq1uE	!UC q!b&>D Y4!a%"*,-E5$D5!D	!UDBI&*+
 Y1u9%E5$D5!D	!UR4!8_t+a$h@AH    c                    t        |       t        |      }} t        || | z
  z         }t        | ||z
  z         } | j                  j                  dv r| j                  j                  }nd}t        | j                  |      }|dkD  |dk  z  }t        ||t               t        | dt        z        }d|z
  ||dz  t        z  k  z  }t        ||d       d|z
  d|z
  z  }t        ||d       |S )aB  
    Return a periodic square-wave waveform.

    The square wave has a period ``2*pi``, has value +1 from 0 to
    ``2*pi*duty`` and -1 from ``2*pi*duty`` to ``2*pi``. `duty` must be in
    the interval [0,1].

    Note that this is not band-limited.  It produces an infinite number
    of harmonics, which are aliased back and forth across the frequency
    spectrum.

    Parameters
    ----------
    t : array_like
        The input time array.
    duty : array_like, optional
        Duty cycle.  Default is 0.5 (50% duty cycle).
        If an array, causes wave shape to change over time, and must be the
        same length as t.

    Returns
    -------
    y : ndarray
        Output array containing the square waveform.

    Examples
    --------
    A 5 Hz waveform sampled at 500 Hz for 1 second:

    >>> import numpy as np
    >>> from scipy import signal
    >>> import matplotlib.pyplot as plt
    >>> t = np.linspace(0, 1, 500, endpoint=False)
    >>> plt.plot(t, signal.square(2 * np.pi * 5 * t))
    >>> plt.ylim(-2, 2)

    A pulse-width modulated sine wave:

    >>> plt.figure()
    >>> sig = np.sin(2 * np.pi * t)
    >>> pwm = signal.square(2 * np.pi * 30 * t, duty=(sig + 1)/2)
    >>> plt.subplot(2, 1, 1)
    >>> plt.plot(t, sig)
    >>> plt.subplot(2, 1, 2)
    >>> plt.plot(t, pwm)
    >>> plt.ylim(-1.5, 1.5)

    r   r   r   r   r   )	r   r   r   r   r   r   r   r   r   )	r    dutyr"   r#   r$   r%   r&   r'   r*   s	            r+   r   r   X   s    b 1:wt}qAQUAQUAww||xagguA Uq1uE	!UC q!b&>DY4!a%"*,-E	!UA Y1u9%E	!UBHr,   c                 P   |dk  rt        d|z        |dk  rt        d|z        |dk\  rt        d|z        t        d|dz        }t        |z  |z  dz   dt        |      z  z  }t	        | t
              rG| d	k(  r7|dk\  rt        d
      t        d|dz        }	t        t        |	       |z        S t        d      t        | | z  | z        }
|
t        dt        z  |z  | z        z  }|
t        dt        z  |z  | z        z  }|s|s|S |s|r||
fS |r|s||fS |r|r|||
fS yy)aa  
    Return a Gaussian modulated sinusoid:

        ``exp(-a t^2) exp(1j*2*pi*fc*t).``

    If `retquad` is True, then return the real and imaginary parts
    (in-phase and quadrature).
    If `retenv` is True, then return the envelope (unmodulated signal).
    Otherwise, return the real part of the modulated sinusoid.

    Parameters
    ----------
    t : ndarray or the string 'cutoff'
        Input array.
    fc : float, optional
        Center frequency (e.g. Hz).  Default is 1000.
    bw : float, optional
        Fractional bandwidth in frequency domain of pulse (e.g. Hz).
        Default is 0.5.
    bwr : float, optional
        Reference level at which fractional bandwidth is calculated (dB).
        Default is -6.
    tpr : float, optional
        If `t` is 'cutoff', then the function returns the cutoff
        time for when the pulse amplitude falls below `tpr` (in dB).
        Default is -60.
    retquad : bool, optional
        If True, return the quadrature (imaginary) as well as the real part
        of the signal.  Default is False.
    retenv : bool, optional
        If True, return the envelope of the signal.  Default is False.

    Returns
    -------
    yI : ndarray
        Real part of signal.  Always returned.
    yQ : ndarray
        Imaginary part of signal.  Only returned if `retquad` is True.
    yenv : ndarray
        Envelope of signal.  Only returned if `retenv` is True.

    See Also
    --------
    scipy.signal.morlet

    Examples
    --------
    Plot real component, imaginary component, and envelope for a 5 Hz pulse,
    sampled at 100 Hz for 2 seconds:

    >>> import numpy as np
    >>> from scipy import signal
    >>> import matplotlib.pyplot as plt
    >>> t = np.linspace(-1, 1, 2 * 100, endpoint=False)
    >>> i, q, e = signal.gausspulse(t, fc=5, retquad=True, retenv=True)
    >>> plt.plot(t, i, t, q, t, e, '--')

    r   z'Center frequency (fc=%.2f) must be >=0.z+Fractional bandwidth (bw=%.2f) must be > 0.z7Reference level for bandwidth (bwr=%.2f) must be < 0 dBg      $@g      4@r   g      @cutoffz.Reference level for time cutoff must be < 0 dBz'If `t` is a string, it must be 'cutoff'N)

ValueErrorpowr   r
   
isinstancestrr   r   r   r   )r    fcbwbwrtprretquadretenvrefatrefyenvyIyQs                r+   r   r      sp   x 
AvBRGHH	QwFKLL
ax %'*+ , 	,
 dC$J
C r'B,1	c#h/A!S= ax  "- . .tS4Z(DT
Q''FGGrAvz?D	AFRK!O$	$B	AFRK!O$	$B6	v4xv2v62t| wr,   c                 V    t        | |||||      }|t        dz  z  }t        ||z         S )aR  Frequency-swept cosine generator.

    In the following, 'Hz' should be interpreted as 'cycles per unit';
    there is no requirement here that the unit is one second.  The
    important distinction is that the units of rotation are cycles, not
    radians. Likewise, `t` could be a measurement of space instead of time.

    Parameters
    ----------
    t : array_like
        Times at which to evaluate the waveform.
    f0 : float
        Frequency (e.g. Hz) at time t=0.
    t1 : float
        Time at which `f1` is specified.
    f1 : float
        Frequency (e.g. Hz) of the waveform at time `t1`.
    method : {'linear', 'quadratic', 'logarithmic', 'hyperbolic'}, optional
        Kind of frequency sweep.  If not given, `linear` is assumed.  See
        Notes below for more details.
    phi : float, optional
        Phase offset, in degrees. Default is 0.
    vertex_zero : bool, optional
        This parameter is only used when `method` is 'quadratic'.
        It determines whether the vertex of the parabola that is the graph
        of the frequency is at t=0 or t=t1.

    Returns
    -------
    y : ndarray
        A numpy array containing the signal evaluated at `t` with the
        requested time-varying frequency.  More precisely, the function
        returns ``cos(phase + (pi/180)*phi)`` where `phase` is the integral
        (from 0 to `t`) of ``2*pi*f(t)``. ``f(t)`` is defined below.

    See Also
    --------
    sweep_poly

    Notes
    -----
    There are four options for the `method`.  The following formulas give
    the instantaneous frequency (in Hz) of the signal generated by
    `chirp()`.  For convenience, the shorter names shown below may also be
    used.

    linear, lin, li:

        ``f(t) = f0 + (f1 - f0) * t / t1``

    quadratic, quad, q:

        The graph of the frequency f(t) is a parabola through (0, f0) and
        (t1, f1).  By default, the vertex of the parabola is at (0, f0).
        If `vertex_zero` is False, then the vertex is at (t1, f1).  The
        formula is:

        if vertex_zero is True:

            ``f(t) = f0 + (f1 - f0) * t**2 / t1**2``

        else:

            ``f(t) = f1 - (f1 - f0) * (t1 - t)**2 / t1**2``

        To use a more general quadratic function, or an arbitrary
        polynomial, use the function `scipy.signal.sweep_poly`.

    logarithmic, log, lo:

        ``f(t) = f0 * (f1/f0)**(t/t1)``

        f0 and f1 must be nonzero and have the same sign.

        This signal is also known as a geometric or exponential chirp.

    hyperbolic, hyp:

        ``f(t) = f0*f1*t1 / ((f0 - f1)*t + f1*t1)``

        f0 and f1 must be nonzero.

    Examples
    --------
    The following will be used in the examples:

    >>> import numpy as np
    >>> from scipy.signal import chirp, spectrogram
    >>> import matplotlib.pyplot as plt

    For the first example, we'll plot the waveform for a linear chirp
    from 6 Hz to 1 Hz over 10 seconds:

    >>> t = np.linspace(0, 10, 1500)
    >>> w = chirp(t, f0=6, f1=1, t1=10, method='linear')
    >>> plt.plot(t, w)
    >>> plt.title("Linear Chirp, f(0)=6, f(10)=1")
    >>> plt.xlabel('t (sec)')
    >>> plt.show()

    For the remaining examples, we'll use higher frequency ranges,
    and demonstrate the result using `scipy.signal.spectrogram`.
    We'll use a 4 second interval sampled at 7200 Hz.

    >>> fs = 7200
    >>> T = 4
    >>> t = np.arange(0, int(T*fs)) / fs

    We'll use this function to plot the spectrogram in each example.

    >>> def plot_spectrogram(title, w, fs):
    ...     ff, tt, Sxx = spectrogram(w, fs=fs, nperseg=256, nfft=576)
    ...     fig, ax = plt.subplots()
    ...     ax.pcolormesh(tt, ff[:145], Sxx[:145], cmap='gray_r',
    ...                   shading='gouraud')
    ...     ax.set_title(title)
    ...     ax.set_xlabel('t (sec)')
    ...     ax.set_ylabel('Frequency (Hz)')
    ...     ax.grid(True)
    ...

    Quadratic chirp from 1500 Hz to 250 Hz
    (vertex of the parabolic curve of the frequency is at t=0):

    >>> w = chirp(t, f0=1500, f1=250, t1=T, method='quadratic')
    >>> plot_spectrogram(f'Quadratic Chirp, f(0)=1500, f({T})=250', w, fs)
    >>> plt.show()

    Quadratic chirp from 1500 Hz to 250 Hz
    (vertex of the parabolic curve of the frequency is at t=T):

    >>> w = chirp(t, f0=1500, f1=250, t1=T, method='quadratic',
    ...           vertex_zero=False)
    >>> plot_spectrogram(f'Quadratic Chirp, f(0)=1500, f({T})=250\n' +
    ...                  '(vertex_zero=False)', w, fs)
    >>> plt.show()

    Logarithmic chirp from 1500 Hz to 250 Hz:

    >>> w = chirp(t, f0=1500, f1=250, t1=T, method='logarithmic')
    >>> plot_spectrogram(f'Logarithmic Chirp, f(0)=1500, f({T})=250', w, fs)
    >>> plt.show()

    Hyperbolic chirp from 1500 Hz to 250 Hz:

    >>> w = chirp(t, f0=1500, f1=250, t1=T, method='hyperbolic')
    >>> plot_spectrogram(f'Hyperbolic Chirp, f(0)=1500, f({T})=250', w, fs)
    >>> plt.show()

       )_chirp_phaser   r   )r    f0t1f1methodphivertex_zerophases           r+   r   r     s5    p BB<E28OCus{r,   c                    t        |       } t        |      }t        |      }t        |      }|dv r%||z
  |z  }dt        z  || z  d|z  | z  | z  z   z  }|S |dv rP||z
  |dz  z  }|rdt        z  || z  || dz  z  dz  z   z  }|S dt        z  || z  ||| z
  dz  |dz  z
  z  dz  z   z  }|S |dv ra||z  dk  rt        d      ||k(  rdt        z  |z  | z  }|S |t	        ||z        z  }dt        z  |z  |z  t        ||z  | |z        d	z
  z  }|S |d
v rn|dk(  s|dk(  rt        d      ||k(  rdt        z  |z  | z  }|S | |z  ||z
  z  }dt        z  | |z  z  t	        t        j                  d| |z  z
              z  }|S t        d|z        )z{
    Calculate the phase used by `chirp` to generate its output.

    See `chirp` for a description of the arguments.

    )linearlinlir         ?)	quadraticquadq   )logarithmicr
   log        zJFor a logarithmic chirp, f0 and f1 must be nonzero and have the same sign.g      ?)
hyperbolichypr   z2For a hyperbolic chirp, f0 and f1 must be nonzero.r   zbmethod must be 'linear', 'quadratic', 'logarithmic', or 'hyperbolic', but a value of %r was given.)r   floatr   r2   r
   r3   npabs)	r    rE   rF   rG   rH   rJ   betarK   sings	            r+   rD   rD     s3    	
A	rB	rB	rB((R2~B"q&3:>A#556J LG 
-	-RB!G$Fb1fta1f}q'889E@ L= Fb1ftQ1}rQw/F'G!'KKLE< L9 
/	/7c> ? @ @8FRK!OE. L+ BG$DFTMB&#b2gq2v*>*DEE( L% 
(	(7bAg ( ) )8FRK!OE L 38rBw'DFtebj)Cq1T6z0B,CCE L	  J!" # 	#r,   c                 N    t        | |      }|t        dz  z  }t        ||z         S )a&
  
    Frequency-swept cosine generator, with a time-dependent frequency.

    This function generates a sinusoidal function whose instantaneous
    frequency varies with time.  The frequency at time `t` is given by
    the polynomial `poly`.

    Parameters
    ----------
    t : ndarray
        Times at which to evaluate the waveform.
    poly : 1-D array_like or instance of numpy.poly1d
        The desired frequency expressed as a polynomial.  If `poly` is
        a list or ndarray of length n, then the elements of `poly` are
        the coefficients of the polynomial, and the instantaneous
        frequency is

          ``f(t) = poly[0]*t**(n-1) + poly[1]*t**(n-2) + ... + poly[n-1]``

        If `poly` is an instance of numpy.poly1d, then the
        instantaneous frequency is

          ``f(t) = poly(t)``

    phi : float, optional
        Phase offset, in degrees, Default: 0.

    Returns
    -------
    sweep_poly : ndarray
        A numpy array containing the signal evaluated at `t` with the
        requested time-varying frequency.  More precisely, the function
        returns ``cos(phase + (pi/180)*phi)``, where `phase` is the integral
        (from 0 to t) of ``2 * pi * f(t)``; ``f(t)`` is defined above.

    See Also
    --------
    chirp

    Notes
    -----
    .. versionadded:: 0.8.0

    If `poly` is a list or ndarray of length `n`, then the elements of
    `poly` are the coefficients of the polynomial, and the instantaneous
    frequency is:

        ``f(t) = poly[0]*t**(n-1) + poly[1]*t**(n-2) + ... + poly[n-1]``

    If `poly` is an instance of `numpy.poly1d`, then the instantaneous
    frequency is:

          ``f(t) = poly(t)``

    Finally, the output `s` is:

        ``cos(phase + (pi/180)*phi)``

    where `phase` is the integral from 0 to `t` of ``2 * pi * f(t)``,
    ``f(t)`` as defined above.

    Examples
    --------
    Compute the waveform with instantaneous frequency::

        f(t) = 0.025*t**3 - 0.36*t**2 + 1.25*t + 2

    over the interval 0 <= t <= 10.

    >>> import numpy as np
    >>> from scipy.signal import sweep_poly
    >>> p = np.poly1d([0.025, -0.36, 1.25, 2.0])
    >>> t = np.linspace(0, 10, 5001)
    >>> w = sweep_poly(t, p)

    Plot it:

    >>> import matplotlib.pyplot as plt
    >>> plt.subplot(2, 1, 1)
    >>> plt.plot(t, w)
    >>> plt.title("Sweep Poly\nwith frequency " +
    ...           "$f(t) = 0.025t^3 - 0.36t^2 + 1.25t + 2$")
    >>> plt.subplot(2, 1, 2)
    >>> plt.plot(t, p(t), 'r', label='f(t)')
    >>> plt.legend()
    >>> plt.xlabel('t')
    >>> plt.tight_layout()
    >>> plt.show()

    rC   )_sweep_poly_phaser   r   )r    polyrI   rK   s       r+   r   r     s-    x a&E28OCus{r,   c                 H    t        |      }dt        z  t        ||       z  }|S )z
    Calculate the phase used by sweep_poly to generate its output.

    See `sweep_poly` for a description of the arguments.

    r   )r   r   r   )r    r`   intpolyrK   s       r+   r_   r_   =  s'     dmGFWWa((ELr,   c                     t        | |      }t        j                  |       } |dt        |       z  }n/|dk(  rt	        | dz        }nt        |d      s|ft        |       z  }d||<   |S )aB  
    Unit impulse signal (discrete delta function) or unit basis vector.

    Parameters
    ----------
    shape : int or tuple of int
        Number of samples in the output (1-D), or a tuple that represents the
        shape of the output (N-D).
    idx : None or int or tuple of int or 'mid', optional
        Index at which the value is 1.  If None, defaults to the 0th element.
        If ``idx='mid'``, the impulse will be centered at ``shape // 2`` in
        all dimensions.  If an int, the impulse will be at `idx` in all
        dimensions.
    dtype : data-type, optional
        The desired data-type for the array, e.g., ``numpy.int8``.  Default is
        ``numpy.float64``.

    Returns
    -------
    y : ndarray
        Output array containing an impulse signal.

    Notes
    -----
    The 1D case is also known as the Kronecker delta.

    .. versionadded:: 0.19.0

    Examples
    --------
    An impulse at the 0th element (:math:`\delta[n]`):

    >>> from scipy import signal
    >>> signal.unit_impulse(8)
    array([ 1.,  0.,  0.,  0.,  0.,  0.,  0.,  0.])

    Impulse offset by 2 samples (:math:`\delta[n-2]`):

    >>> signal.unit_impulse(7, 2)
    array([ 0.,  0.,  1.,  0.,  0.,  0.,  0.])

    2-dimensional impulse, centered:

    >>> signal.unit_impulse((3, 3), 'mid')
    array([[ 0.,  0.,  0.],
           [ 0.,  1.,  0.],
           [ 0.,  0.,  0.]])

    Impulse at (2, 2), using broadcasting:

    >>> signal.unit_impulse((4, 4), 2)
    array([[ 0.,  0.,  0.,  0.],
           [ 0.,  0.,  0.,  0.],
           [ 0.,  0.,  1.,  0.],
           [ 0.,  0.,  0.,  0.]])

    Plot the impulse response of a 4th-order Butterworth lowpass filter:

    >>> imp = signal.unit_impulse(100, 'mid')
    >>> b, a = signal.butter(4, 0.2)
    >>> response = signal.lfilter(b, a, imp)

    >>> import numpy as np
    >>> import matplotlib.pyplot as plt
    >>> plt.plot(np.arange(-50, 50), imp)
    >>> plt.plot(np.arange(-50, 50), response)
    >>> plt.margins(0.1, 0.1)
    >>> plt.xlabel('Time [samples]')
    >>> plt.ylabel('Amplitude')
    >>> plt.grid(True)
    >>> plt.show()

    r   midr   __iter__r   )r   rZ   
atleast_1dlentuplehasattr)r   idxr   outs       r+   r   r   J  so    T u
CMM% E
{SZ	EQJS*%fs5z!CHJr,   )r   )rP   )i  rP   iiFF)rM   r   T)rM   Trd   )numpyrZ   r   r   r   r   r   r   r	   r
   r   r   r   r   r   r   __all__r   r   r   r   rD   r   r_   rY   r    r,   r+   <module>rp      si    $ $ $ $EPHV =BbJ[|2j_D
 ! Vr,   