
    tKg                     
   d Z ddlZddlmZ dgZi ddgddgddgd	dgd
d	gdd
gdg ddd	gddgddgdg ddg ddg dddgdg dddgddgg ddgdgdgdgg dd gg d!g d"d#gd$gg d%d&gg d'd(Zd*d)Zy)+zTools for MLS generation    N   )_max_len_seq_innermax_len_seq                     )r   r
   r   	   
         )r   r   r      )r   r   r      )r   r   r         )r   r   r         )r   r   r         )      r   r   )         )   r   r   r      )      r   r!   )      r   )r   r   r   r   r   r   r   r   r   r!   r    r#   r"       c                    t        j                         j                  dk(  rt         j                  nt         j                  }|| t
        vr^t        j                  t        t
        j                                     }t        d|j                          d|j                          d      t        j                  t
        |    |      }nt        j                  t        j                  ||            ddd   }t        j                  |dk        s't        j                  || kD        s|j                  dk  rt        d	      t        j                  |      }d
| z  dz
  }||}nt        |      }|dk  rt        d      |'t        j                   | t         j"                  d      }n9t        j                  |t$        d      j'                  t         j"                        }|j(                  dk7  s|j                  | k7  rt        d      t        j*                  |dk(        rt        d      t        j,                  |t         j"                  d      }t/        ||| ||      }||fS )a}
  
    Maximum length sequence (MLS) generator.

    Parameters
    ----------
    nbits : int
        Number of bits to use. Length of the resulting sequence will
        be ``(2**nbits) - 1``. Note that generating long sequences
        (e.g., greater than ``nbits == 16``) can take a long time.
    state : array_like, optional
        If array, must be of length ``nbits``, and will be cast to binary
        (bool) representation. If None, a seed of ones will be used,
        producing a repeatable representation. If ``state`` is all
        zeros, an error is raised as this is invalid. Default: None.
    length : int, optional
        Number of samples to compute. If None, the entire length
        ``(2**nbits) - 1`` is computed.
    taps : array_like, optional
        Polynomial taps to use (e.g., ``[7, 6, 1]`` for an 8-bit sequence).
        If None, taps will be automatically selected (for up to
        ``nbits == 32``).

    Returns
    -------
    seq : array
        Resulting MLS sequence of 0's and 1's.
    state : array
        The final state of the shift register.

    Notes
    -----
    The algorithm for MLS generation is generically described in:

        https://en.wikipedia.org/wiki/Maximum_length_sequence

    The default values for taps are specifically taken from the first
    option listed for each value of ``nbits`` in:

        https://web.archive.org/web/20181001062252/http://www.newwaveinstruments.com/resources/articles/m_sequence_linear_feedback_shift_register_lfsr.htm

    .. versionadded:: 0.15.0

    Examples
    --------
    MLS uses binary convention:

    >>> from scipy.signal import max_len_seq
    >>> max_len_seq(4)[0]
    array([1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0], dtype=int8)

    MLS has a white spectrum (except for DC):

    >>> import numpy as np
    >>> import matplotlib.pyplot as plt
    >>> from numpy.fft import fft, ifft, fftshift, fftfreq
    >>> seq = max_len_seq(6)[0]*2-1  # +1 and -1
    >>> spec = fft(seq)
    >>> N = len(seq)
    >>> plt.plot(fftshift(fftfreq(N)), fftshift(np.abs(spec)), '.-')
    >>> plt.margins(0.1, 0.1)
    >>> plt.grid(True)
    >>> plt.show()

    Circular autocorrelation of MLS is an impulse:

    >>> acorrcirc = ifft(spec * np.conj(spec)).real
    >>> plt.figure()
    >>> plt.plot(np.arange(-N/2+1, N/2+1), fftshift(acorrcirc), '.-')
    >>> plt.margins(0.1, 0.1)
    >>> plt.grid(True)
    >>> plt.show()

    Linear autocorrelation of MLS is approximately an impulse:

    >>> acorr = np.correlate(seq, seq, 'full')
    >>> plt.figure()
    >>> plt.plot(np.arange(-N+1, N), acorr, '.-')
    >>> plt.margins(0.1, 0.1)
    >>> plt.grid(True)
    >>> plt.show()

    r   Nznbits must be between z and z if taps is Noner   r   zEtaps must be non-empty with values between zero and nbits (inclusive)r   z)length must be greater than or equal to 0c)dtypeorderz'state must be a 1-D array of size nbitszstate must not be all zeros)npintpitemsizeint32int64	_mls_tapsarraylistkeys
ValueErrorminmaxuniqueanysizeintonesint8boolastypendimallemptyr   )nbitsstatelengthtaps
taps_dtype
known_tapsn_maxseqs           ]/home/alanp/www/video.onchill/myenv/lib/python3.12/site-packages/scipy/signal/_max_len_seq.pyr   r      s   f  WWY//14"((J|	!$y~~'7"89J5jnn6F5Gu * 011AC D Dxx	%(*5yy$
34TrT:66$(rvvdUl3tyy1} : ; ;xx~XNE~VA:HII }RWWC8 d#6==bggFzzQ%**-BCC	vveqj677
((6
4CtUE63?E:    )NNN)__doc__numpyr*   r   __all__r/   r    rJ   rI   <module>rO      s     2/)Q )Q )Q )Q )Q )Q )Q	 ))!) 1#)');)8:K)) 2$)(*K)9;bT) ") (bTt"<bT|B4bT{<)	urJ   