
    tKg>                         d Z ddlZddlmZmZmZmZmZmZm	Z	m
Z
mZ ddlmZ ddlmZmZmZ g dZd Zd	 Zd
 Zd Zd Zd ZddZddZd ZddZddZy)zr
ltisys -- a collection of functions to convert linear time invariant systems
from one representation to another.
    N)	r_eye
atleast_2dpolydotasarrayzerosarrayouter)linalg   )tf2zpkzpk2tf	normalize)tf2ssabcd_normalizess2tfzpk2ssss2zpkcont2discretec                 D   t        | |      \  } }t        | j                        }|dk(  rt        | g| j                        } | j                  d   }t        |      }||kD  rd}t        |      |dk(  s|dk(  r>t        g t              t        g t              t        g t              t        g t              fS t        j                  t        j                  | j                  d   ||z
  f| j                        | f      } | j                  d   dkD  rt        | dddf         }nt        dggt              }|dk(  rZ|j                  | j                        }t        d      t        d|j                  d   f      t        |j                  d   df      |fS t        |dd g       }t        |t        |dz
  |dz
        f   }t        |dz
  d      }	| ddddf   t        | dddf   |dd       z
  }
|j                  |
j                  d   |	j                  d   f      }||	|
|fS )	a  Transfer function to state-space representation.

    Parameters
    ----------
    num, den : array_like
        Sequences representing the coefficients of the numerator and
        denominator polynomials, in order of descending degree. The
        denominator needs to be at least as long as the numerator.

    Returns
    -------
    A, B, C, D : ndarray
        State space representation of the system, in controller canonical
        form.

    Examples
    --------
    Convert the transfer function:

    .. math:: H(s) = \frac{s^2 + 3s + 3}{s^2 + 2s + 1}

    >>> num = [1, 3, 3]
    >>> den = [1, 2, 1]

    to the state-space representation:

    .. math::

        \dot{\textbf{x}}(t) =
        \begin{bmatrix} -2 & -1 \\ 1 & 0 \end{bmatrix} \textbf{x}(t) +
        \begin{bmatrix} 1 \\ 0 \end{bmatrix} \textbf{u}(t) \\

        \textbf{y}(t) = \begin{bmatrix} 1 & 2 \end{bmatrix} \textbf{x}(t) +
        \begin{bmatrix} 1 \end{bmatrix} \textbf{u}(t)

    >>> from scipy.signal import tf2ss
    >>> A, B, C, D = tf2ss(num, den)
    >>> A
    array([[-2., -1.],
           [ 1.,  0.]])
    >>> B
    array([[ 1.],
           [ 0.]])
    >>> C
    array([[ 1.,  2.]])
    >>> D
    array([[ 1.]])
    r   z7Improper transfer function. `num` is longer than `den`.r   )dtypeN)r   r      )r   lenshaper   r   
ValueErrorr
   floatnphstackr	   r   reshaper   r   r   )numdennnMKmsgDfrowABCs              `/home/alanp/www/video.onchill/myenv/lib/python3.12/site-packages/scipy/signal/_lti_conversion.pyr   r      s   p c"HC	SYYB	QwseSYY'		!ACA1uGoAvab% %E"2E"e4Db% " 	" ))RXXsyy|QU3399EsK
LC
yy}qs1a4y! A3%AvIIcii fua_5qwwqz1o&+ 	+ 3qr7)D
4QUAE""#AAE1AAqrE
U3q!t9c!"g..A			1771:qwwqz*+AaA:    c                      | t        d      S | S )Nr   r   )r	   args    r-   _none_to_empty_2dr3   s   s    
{V}
r.   c                     | t        |       S y N)r   r1   s    r-   _atleast_2d_or_noner6   z   s    
# r.   c                      | | j                   S y)N)NN)r   )r%   s    r-   _shape_or_noner8      s    }wwr.   c                      | D ]  }||c S  y r5    )argsr2   s     r-   _choice_not_noner<      s    ?J r.   c                 n    | j                   dk(  rt        |      S | j                   |k7  rt        d      | S )Nr0   z*The input arrays have incompatible shapes.)r   r	   r   )r%   r   s     r-   _restorer>      s5    ww&U|77eIJJr.   c                    t        t        | |||f      \  } }}}t        |       \  }}t        |      \  }}t        |      \  }}	t        |      \  }
}t        |||	      }t        ||      }t        ||
      }|||t	        d      t        t
        | |||f      \  } }}}t        | ||f      } t        |||f      }t        |||f      }t        |||f      }| |||fS )a  Check state-space matrices and ensure they are 2-D.

    If enough information on the system is provided, that is, enough
    properly-shaped arrays are passed to the function, the missing ones
    are built from this information, ensuring the correct number of
    rows and columns. Otherwise a ValueError is raised.

    Parameters
    ----------
    A, B, C, D : array_like, optional
        State-space matrices. All of them are None (missing) by default.
        See `ss2tf` for format.

    Returns
    -------
    A, B, C, D : array
        Properly shaped state-space matrices.

    Raises
    ------
    ValueError
        If not enough information on the system was provided.

    z%Not enough information on the system.)mapr6   r8   r<   r   r3   r>   )r*   r+   r,   r(   MANAMBNBMCNCMDNDpqrs                  r-   r   r      s   2 (1aA,7JAq!QAFBAFBAFBAFBR$AR AR AyAI@AA&Aq!5JAq!QQFAQFAQFAQFAaA:r.   c                    t        | |||      \  } }}}|j                  \  }}||k\  rt        d      |dd||dz   f   }|dd||dz   f   }	 t        |       }|j                  dk(  rH|j                  dk(  r9t        j                  |      }|j                  dk(  r| j                  dk(  rg }||fS | j                  d   }	| dddf   |dddf   z   |dddf   z   |z   dz   }
t        j                  ||	dz   f|
j                        }t        |      D ];  }t        ||ddf         }t        | t        ||      z
        ||   dz
  |z  z   ||<   = ||fS # t        $ r d}Y 	w xY w)a  State-space to transfer function.

    A, B, C, D defines a linear state-space system with `p` inputs,
    `q` outputs, and `n` state variables.

    Parameters
    ----------
    A : array_like
        State (or system) matrix of shape ``(n, n)``
    B : array_like
        Input matrix of shape ``(n, p)``
    C : array_like
        Output matrix of shape ``(q, n)``
    D : array_like
        Feedthrough (or feedforward) matrix of shape ``(q, p)``
    input : int, optional
        For multiple-input systems, the index of the input to use.

    Returns
    -------
    num : 2-D ndarray
        Numerator(s) of the resulting transfer function(s). `num` has one row
        for each of the system's outputs. Each row is a sequence representation
        of the numerator polynomial.
    den : 1-D ndarray
        Denominator of the resulting transfer function(s). `den` is a sequence
        representation of the denominator polynomial.

    Examples
    --------
    Convert the state-space representation:

    .. math::

        \dot{\textbf{x}}(t) =
        \begin{bmatrix} -2 & -1 \\ 1 & 0 \end{bmatrix} \textbf{x}(t) +
        \begin{bmatrix} 1 \\ 0 \end{bmatrix} \textbf{u}(t) \\

        \textbf{y}(t) = \begin{bmatrix} 1 & 2 \end{bmatrix} \textbf{x}(t) +
        \begin{bmatrix} 1 \end{bmatrix} \textbf{u}(t)

    >>> A = [[-2, -1], [1, 0]]
    >>> B = [[1], [0]]  # 2-D column vector
    >>> C = [[1, 2]]    # 2-D row vector
    >>> D = 1

    to the transfer function:

    .. math:: H(s) = \frac{s^2 + 3s + 3}{s^2 + 2s + 1}

    >>> from scipy.signal import ss2tf
    >>> ss2tf(A, B, C, D)
    (array([[1., 3., 3.]]), array([ 1.,  2.,  1.]))
    z)System does not have the input specified.Nr   r           )r   r   r   r   sizer   ravelemptyr   ranger   r   )r*   r+   r,   r(   inputnoutninr#   r"   
num_states	type_testkCks                r-   r   r      s   t  1a+JAq!QID#|DEE 	
!U519_
A	!U519_
A1g 	
!!&&A+hhqkFFaKaffkCCxJ!Q$!AqD'!AadG+a/#5I
((D*q.)9??
;C4[!Q$ a#a*n%1S(88A  8O!  s   E E%$E%c                 (    t        t        | ||       S )a:  Zero-pole-gain representation to state-space representation

    Parameters
    ----------
    z, p : sequence
        Zeros and poles.
    k : float
        System gain.

    Returns
    -------
    A, B, C, D : ndarray
        State space representation of the system, in controller canonical
        form.

    )r   r   )zrI   rW   s      r-   r   r     s    " &Aq/""r.   c           	      .    t        t        | ||||       S )a  State-space representation to zero-pole-gain representation.

    A, B, C, D defines a linear state-space system with `p` inputs,
    `q` outputs, and `n` state variables.

    Parameters
    ----------
    A : array_like
        State (or system) matrix of shape ``(n, n)``
    B : array_like
        Input matrix of shape ``(n, p)``
    C : array_like
        Output matrix of shape ``(q, n)``
    D : array_like
        Feedthrough (or feedforward) matrix of shape ``(q, p)``
    input : int, optional
        For multiple-input systems, the index of the input to use.

    Returns
    -------
    z, p : sequence
        Zeros and poles.
    k : float
        System gain.

    )rR   )r   r   )r*   r+   r,   r(   rR   s        r-   r   r   1  s    6 5Aq!5122r.   c                 	   t        |       dk(  r| j                         S t        |       dk(  r=t        t        | d   | d         |||      }t	        |d   |d   |d   |d         |fz   S t        |       dk(  rAt        t        | d   | d   | d         |||      }t        |d   |d   |d   |d         |fz   S t        |       dk(  r| \  }}}}nt        d      |dk(  r"|t        d
      |dk  s|dkD  rt        d      |dk(  rt        j                  |j                  d         ||z  |z  z
  }	t        j                  |	t        j                  |j                  d         d|z
  |z  |z  z         }
t        j                  |	||z        }t        j                  |	j                         |j                               }|j                         }||t        j                  ||      z  z   }n|dk(  s|dk(  rt        | |dd      S |dk(  s|dk(  rt        | |dd      S |dk(  rt        | |dd      S |dk(  r	t        j                  ||f      }t        j                  t        j                   |j                  d   |j                  d   f      t        j                   |j                  d   |j                  d   f      f      }t        j"                  ||f      }t        j$                  ||z        }|d	|j                  d   d	d	f   }|d	d	d|j                  d   f   }
|d	d	|j                  d   d	f   }|}|}nC|dk(  r|j                  d   }|j                  d   }t        j&                  t        j(                  ||g      |z  t        j                  |            }t!        ||d|z  z   f      }t        j(                  |g|gg      }t        j$                  |      }|d	|d|f   }|d	||||z   f   }|d	|||z   d	f   }|}
||z
  ||z  z   }|}|||z  z   }n_|dk(  rLt        j*                  |d      st        d      t        j$                  ||z        }
|
|z  |z  }|}||z  |z  }nt        d|z        |
||||fS )a\  
    Transform a continuous to a discrete state-space system.

    Parameters
    ----------
    system : a tuple describing the system or an instance of `lti`
        The following gives the number of elements in the tuple and
        the interpretation:

            * 1: (instance of `lti`)
            * 2: (num, den)
            * 3: (zeros, poles, gain)
            * 4: (A, B, C, D)

    dt : float
        The discretization time step.
    method : str, optional
        Which method to use:

            * gbt: generalized bilinear transformation
            * bilinear: Tustin's approximation ("gbt" with alpha=0.5)
            * euler: Euler (or forward differencing) method ("gbt" with alpha=0)
            * backward_diff: Backwards differencing ("gbt" with alpha=1.0)
            * zoh: zero-order hold (default)
            * foh: first-order hold (*versionadded: 1.3.0*)
            * impulse: equivalent impulse response (*versionadded: 1.3.0*)

    alpha : float within [0, 1], optional
        The generalized bilinear transformation weighting parameter, which
        should only be specified with method="gbt", and is ignored otherwise

    Returns
    -------
    sysd : tuple containing the discrete system
        Based on the input type, the output will be of the form

        * (num, den, dt)   for transfer function input
        * (zeros, poles, gain, dt)   for zeros-poles-gain input
        * (A, B, C, D, dt) for state-space system input

    Notes
    -----
    By default, the routine uses a Zero-Order Hold (zoh) method to perform
    the transformation. Alternatively, a generalized bilinear transformation
    may be used, which includes the common Tustin's bilinear approximation,
    an Euler's method technique, or a backwards differencing technique.

    The Zero-Order Hold (zoh) method is based on [1]_, the generalized bilinear
    approximation is based on [2]_ and [3]_, the First-Order Hold (foh) method
    is based on [4]_.

    References
    ----------
    .. [1] https://en.wikipedia.org/wiki/Discretization#Discretization_of_linear_state_space_models

    .. [2] http://techteach.no/publications/discretetime_signals_systems/discrete.pdf

    .. [3] G. Zhang, X. Chen, and T. Chen, Digital redesign via the generalized
        bilinear transformation, Int. J. Control, vol. 82, no. 4, pp. 741-754,
        2009.
        (https://www.mypolyuweb.hk/~magzhang/Research/ZCC09_IJC.pdf)

    .. [4] G. F. Franklin, J. D. Powell, and M. L. Workman, Digital control
        of dynamic systems, 3rd ed. Menlo Park, Calif: Addison-Wesley,
        pp. 204-206, 1998.

    Examples
    --------
    We can transform a continuous state-space system to a discrete one:

    >>> import numpy as np
    >>> import matplotlib.pyplot as plt
    >>> from scipy.signal import cont2discrete, lti, dlti, dstep

    Define a continuous state-space system.

    >>> A = np.array([[0, 1],[-10., -3]])
    >>> B = np.array([[0],[10.]])
    >>> C = np.array([[1., 0]])
    >>> D = np.array([[0.]])
    >>> l_system = lti(A, B, C, D)
    >>> t, x = l_system.step(T=np.linspace(0, 5, 100))
    >>> fig, ax = plt.subplots()
    >>> ax.plot(t, x, label='Continuous', linewidth=3)

    Transform it to a discrete state-space system using several methods.

    >>> dt = 0.1
    >>> for method in ['zoh', 'bilinear', 'euler', 'backward_diff', 'foh', 'impulse']:
    ...    d_system = cont2discrete((A, B, C, D), dt, method=method)
    ...    s, x_d = dstep(d_system)
    ...    ax.step(s, np.squeeze(x_d), label=method, where='post')
    >>> ax.axis([t[0], t[-1], x[0], 1.4])
    >>> ax.legend(loc='best')
    >>> fig.tight_layout()
    >>> plt.show()

    r   r   r   )methodalpha      zKFirst argument must either be a tuple of 2 (tf), 3 (zpk), or 4 (ss) arrays.gbtNzUAlpha parameter must be specified for the generalized bilinear transform (gbt) methodzDAlpha parameter must be within the interval [0,1] for the gbt methodg      ?bilineartusting      ?eulerforward_diffrM   backward_diffzohfohimpulsez<Impulse method is only applicable to strictly proper systemsz"Unknown transformation method '%s')r   to_discreter   r   r   r   r   r   r   r   r   r   solve	transposer   r    r	   vstackexpm
block_diagblockallclose)systemdtr]   r^   sysdabcdimaadbdcdddem_upperem_loweremmsnmms11ms12ms13s                          r-   r   r   O  s   F 6{a!!##
6{aU6!9fQi8"V#(*T!Wd1gtAwQ8B5@@	V	VF1Ivay&)Db$*%9d1gtAwQa9REAA	V	
1a 6 7 	7 = K L LQY%!) 8 9 9 ffQWWQZ 58A:-\\#rvvaggaj1SYN14DDE\\#r!t$ \\#--/1;;=9\\^rvva}$$	:	8!3VRSAA	7	f6VRSAA	?	"VRSAA	599aV$ 99bhh
AGGAJ'?@ hh
AGGAJ'?@B C YY(+,[[b! Q1QWWQZ< 1771:;	5GGAJGGAJ $$RXXq!f%5%:BFF1IF!QQY(XXzH:./[[_ "1"ac'{"1"aAg+"1"a!ef*~D[4$;&T\	9	{{1a  : ; ; [[R !Vb[URZ =FGGr2r2r.   )NNNN)r   )rg   N)__doc__numpyr   r   r   r   r   r   r   r	   r
   r   scipyr   _filter_designr   r   r   __all__r   r3   r6   r8   r<   r>   r   r   r   r   r   r:   r.   r-   <module>r      sk   
 1 1 1  5 5^B
,^Vr#(3<Fr.   