
    tKg                         d dl Z d dlZd dlZd dlZd dlmZmZmZ d dlm	Z	m
Z
mZmZmZmZ d dlZd dlZd dlmZ d dlmZ d dlmZ ddlmZmZ g d	Z G d
 de      Zd Zd Zd Zd Z  e!djE                         djE                               Z#d Z$	 	 	 	 d9dZ% e$e%       	 	 d:dZ& G d d      Z' G d d      Z( G d d      Z)d Z* G d de(      Z+ G d d       Z,d!jE                         e#d"<    G d# d$e+      Z- G d% d&e-      Z. G d' d(e+      Z/ G d) d*e+      Z0 G d+ d,e+      Z1 G d- d.e+      Z2 G d/ d0e(      Z3d1 Z4 e4d2e-      Z5 e4d3e.      Z6 e4d4e/      Z7 e4d5e1      Z8 e4d6e0      Z9 e4d7e2      Z: e4d8e3      Z;y);    N)asarraydotvdot)normsolveinvqrsvdLinAlgError)get_blas_funcs)copy_if_needed)getfullargspec_no_self   )scalar_search_wolfe1scalar_search_armijo)broyden1broyden2andersonlinearmixingdiagbroydenexcitingmixingnewton_krylovBroydenFirstKrylovJacobianInverseJacobianNoConvergencec                       e Zd ZdZy)r   z\Exception raised when nonlinear solver fails to converge within the specified
    `maxiter`.N)__name__
__module____qualname____doc__     Z/home/alanp/www/video.onchill/myenv/lib/python3.12/site-packages/scipy/optimize/_nonlin.pyr   r      s
    r#   r   c                 H    t        j                  |       j                         S N)npabsolutemaxxs    r$   maxnormr,   $   s    ;;q>r#   c                     t        |       } t        j                  | j                  t        j                        st        | t        j
                        S | S )z:Return `x` as an array, of either floats or complex floatsdtype)r   r'   
issubdtyper/   inexactfloat64r*   s    r$   _as_inexactr3   (   s7    
A=="**-q

++Hr#   c                     t        j                  | t        j                  |            } t        |d| j                        } ||       S )z;Return ndarray `x` as same array subclass and shape as `x0`__array_wrap__)r'   reshapeshapegetattrr5   )r+   x0wraps      r$   _array_liker;   0   s8    


1bhhrl#A2')9)9:D7Nr#   c                     t        j                  |       j                         s#t        j                  t         j                        S t        |       S r&   )r'   isfiniteallarrayinfr   )vs    r$   
_safe_normrB   7   s2    ;;q>xx7Nr#   z
    F : function(x) -> f
        Function whose root to find; should take and return an array-like
        object.
    xin : array_like
        Initial guess for the solution
    a  
    iter : int, optional
        Number of iterations to make. If omitted (default), make as many
        as required to meet tolerances.
    verbose : bool, optional
        Print status to stdout on every iteration.
    maxiter : int, optional
        Maximum number of iterations to make. If more are needed to
        meet convergence, `NoConvergence` is raised.
    f_tol : float, optional
        Absolute tolerance (in max-norm) for the residual.
        If omitted, default is 6e-6.
    f_rtol : float, optional
        Relative tolerance for the residual. If omitted, not used.
    x_tol : float, optional
        Absolute minimum step size, as determined from the Jacobian
        approximation. If the step size is smaller than this, optimization
        is terminated as successful. If omitted, not used.
    x_rtol : float, optional
        Relative minimum step size. If omitted, not used.
    tol_norm : function(vector) -> scalar, optional
        Norm to use in convergence check. Default is the maximum norm.
    line_search : {None, 'armijo' (default), 'wolfe'}, optional
        Which type of a line search to use to determine the step size in the
        direction given by the Jacobian approximation. Defaults to 'armijo'.
    callback : function, optional
        Optional callback function. It is called on every iteration as
        ``callback(x, f)`` where `x` is the current solution and `f`
        the corresponding residual.

    Returns
    -------
    sol : ndarray
        An array (of similar array type as `x0`) containing the final solution.

    Raises
    ------
    NoConvergence
        When a solution was not found.

    )params_basicparams_extrac                 N    | j                   r| j                   t        z  | _         y y r&   )r!   
_doc_parts)objs    r$   _set_docrH   u   s    
{{kkJ. r#   c           
          |
t         n|
}
t        ||||	||
      }t               fd}j                         }t	        j
                  |t        j                        } ||      }t        |      }t        |      }|j                  |j                         ||       |||dz   }nd|j                  dz   z  }|du rd}n|du rd}|d	vrt        d
      d}d}d}d}t        |      D ]C  }|j                  |||      }|r nDt        |||z        }|j!                  ||       }t        |      dk(  rt        d      |rt#        |||||      \  }}}}nd}||z   } ||      }t        |      }|j%                  |j                         |       |r	 |||       ||dz  z  |dz  z  }||dz  z  |k  rt        ||      }nt        |t'        |||dz  z              }|}|st(        j*                  j-                  d| |
|      |fz         t(        j*                  j/                          F |rt1        t3        |            d}|r)|j4                  |||dk(  ddd|   d}t3        |      |fS t3        |      S )a  
    Find a root of a function, in a way suitable for large-scale problems.

    Parameters
    ----------
    %(params_basic)s
    jacobian : Jacobian
        A Jacobian approximation: `Jacobian` object or something that
        `asjacobian` can transform to one. Alternatively, a string specifying
        which of the builtin Jacobian approximations to use:

            krylov, broyden1, broyden2, anderson
            diagbroyden, linearmixing, excitingmixing

    %(params_extra)s
    full_output : bool
        If true, returns a dictionary `info` containing convergence
        information.
    raise_exception : bool
        If True, a `NoConvergence` exception is raise if no solution is found.

    See Also
    --------
    asjacobian, Jacobian

    Notes
    -----
    This algorithm implements the inexact Newton method, with
    backtracking or full line searches. Several Jacobian
    approximations are available, including Krylov and Quasi-Newton
    methods.

    References
    ----------
    .. [KIM] C. T. Kelley, "Iterative Methods for Linear and Nonlinear
       Equations". Society for Industrial and Applied Mathematics. (1995)
       https://archive.siam.org/books/kelley/fr16/

    N)f_tolf_rtolx_tolx_rtoliterr   c                 V    t         t        |                   j                         S r&   )r3   r;   flatten)zFr9   s    r$   funcznonlin_solve.<locals>.func   s#    1[B/0199;;r#   r   d   TarmijoF)NrU   wolfezInvalid line searchg?gH.?g?gMbP?)tolr   z[Jacobian inversion yielded zero vector. This indicates a bug in the Jacobian approximation.      ?   z%d:  |F(x)| = %g; step %g
z0A solution was found at the specified tolerance.z:The maximum number of iterations allowed has been reached.)r   rY   )nitfunstatussuccessmessage)r,   TerminationConditionr3   rP   r'   	full_liker@   r   
asjacobiansetupcopysize
ValueErrorrangecheckminr   _nonlin_line_searchupdater)   sysstdoutwriteflushr   r;   	iteration) rR   r9   jacobianrN   verbosemaxiterrJ   rK   rL   rM   tol_normline_searchcallbackfull_outputraise_exception	conditionrS   r+   dxFxFx_normgammaeta_maxeta_tresholdetanr\   rW   sFx_norm_neweta_Ainfos    ``                              r$   nonlin_solver   z   s   Z #*wH$5+0*.X?I 
RB<


A	a	 B	aB2hG(#HNN1668R&QhG166!8nGd		33.// EGL
C7^Q+ #s7{#nnRSn))8q= . / /
 $7aR8C%E!Aq"k ABAaBr(K"%QO Q&!336>L(gu%Cgs5%Q,78C JJ:8B<>$ $ %JJU X Ar 233F ** !Q; , 3 %	&		 1b!4''1b!!r#   c                 l    dg|gt        |      dz  gt              t              z  d fd	fd}|dk(  rt        |d   d|      \  }}	}
n|dk(  rt        d   d    |	      \  }}	d
}|z  z   |d   k(  rd   }n        }t        |      }|||fS )Nr   rY   c                     | 	d   k(  rd   S 
| z  z   } |      }t        |      dz  }|r| 	d<   |d<   |d<   |S )Nr   rY   )rB   )r   storextrA   pry   rS   tmp_Fxtmp_phitmp_sr+   s        r$   phiz _nonlin_line_search.<locals>.phi  s_    a=1:2XHqM1E!HGAJF1Ir#   c                 ^    t        |       z   dz   z  } | |z   d       |       z
  |z  S )Nr   F)r   )abs)r   dsr   rdiffs_norms     r$   derphiz#_nonlin_line_search.<locals>.derphi#  s9    !fvo!U*AbD&Q/255r#   rV   {Gz?)xtolaminrU   )r   rX   )T)r   r   r   )rS   r+   rz   ry   search_typer   sminr   r   phi1phi0r{   r   r   r   r   r   s   `` ` `      @@@@@r$   ri   ri     s    CETFBx{mG!WtBxF
 
6 g,S&'!*26TC4		 &sGAJ,024 	y 	AbDAE!H}AY!W2hGaWr#   c                   *    e Zd ZdZdddddefdZd Zy)r_   z
    Termination condition for an iteration. It is terminated if

    - |F| < f_rtol*|F_0|, AND
    - |F| < f_tol

    AND

    - |dx| < x_rtol*|x|, AND
    - |dx| < x_tol

    Nc                 D   |0t        j                  t         j                        j                  dz  }|t         j                  }|t         j                  }|t         j                  }|| _        || _        || _        || _        || _	        || _
        d | _        d| _        y )NgUUUUUU?r   )r'   finfor2   epsr@   rL   rM   rJ   rK   r   rN   f0_normro   )selfrJ   rK   rL   rM   rN   r   s          r$   __init__zTerminationCondition.__init__J  s     =HHRZZ(,,6E>VVF=FFE>VVF

		r#   c                    | xj                   dz  c_         | j                  |      }| j                  |      }| j                  |      }| j                  || _        |dk(  ry| j                  d| j                   | j                  kD  z  S t	        || j
                  k  xr || j                  z  | j                  k  xr# || j                  k  xr || j                  z  |k        S )Nr   r   rY   )	ro   r   r   rN   intrJ   rK   rL   rM   )r   fr+   ry   f_normx_normdx_norms          r$   rg   zTerminationCondition.checkb  s    !11))B-<<!DLQ;99 233 Fdjj( ;t{{*dll:;4::- :#DKK/69< 	<r#   )r   r   r    r!   r,   r   rg   r"   r#   r$   r_   r_   =  s!     "$d40<r#   r_   c                   0    e Zd ZdZd Zd ZddZd Zd Zy)	Jacobiana  
    Common interface for Jacobians or Jacobian approximations.

    The optional methods come useful when implementing trust region
    etc., algorithms that often require evaluating transposes of the
    Jacobian.

    Methods
    -------
    solve
        Returns J^-1 * v
    update
        Updates Jacobian to point `x` (where the function has residual `Fx`)

    matvec : optional
        Returns J * v
    rmatvec : optional
        Returns A^H * v
    rsolve : optional
        Returns A^-H * v
    matmat : optional
        Returns A * V, where V is a dense matrix with dimensions (N,K).
    todense : optional
        Form the dense Jacobian matrix. Necessary for dense trust region
        algorithms, and useful for testing.

    Attributes
    ----------
    shape
        Matrix dimensions (M, N)
    dtype
        Data type of the matrix.
    func : callable, optional
        Function the Jacobian corresponds to

    c                     g d}|j                         D ]*  \  }}||vrt        d|z        |t        | |||          , t        | d      rdd}y y )N)	r   rj   matvecrmatvecrsolvematmattodenser7   r/   zUnknown keyword argument %sr   c                 B    |t        d|       | j                         S )Nz`dtype` must be None, was )re   r   )r   r/   rc   s      r$   	__array__z$Jacobian.__init__.<locals>.__array__  s'    $$'A%%IJJ||~%r#   NN)itemsre   setattrhasattr)r   kwnamesnamevaluer   s         r$   r   zJacobian.__init__  sb    888:KD%5  !>!EFF dBtH-	 & 4#& $r#   c                     t        |       S r&   )r   r   s    r$   aspreconditionerzJacobian.aspreconditioner  s    t$$r#   c                     t         r&   NotImplementedErrorr   rA   rW   s      r$   r   zJacobian.solve      !!r#   c                      y r&   r"   r   r+   rR   s      r$   rj   zJacobian.update      r#   c                     || _         |j                  |j                  f| _        |j                  | _        | j                  j
                  t        j
                  u r| j                  ||       y y r&   )rS   rd   r7   r/   	__class__rb   r   rj   r   r+   rR   rS   s       r$   rb   zJacobian.setup  sQ    	ffaff%
WW
>>8>>1KK1 2r#   Nr   )	r   r   r    r!   r   r   r   rj   rb   r"   r#   r$   r   r   }  s!    #J& %"r#   r   c                   2    e Zd Zd Zed        Zed        Zy)r   c                     || _         |j                  | _        |j                  | _        t	        |d      r|j
                  | _        t	        |d      r|j                  | _        y y )Nrb   r   )rp   r   r   rj   r   rb   r   r   )r   rp   s     r$   r   zInverseJacobian.__init__  sN     nnoo8W%!DJ8X&#??DL 'r#   c                 .    | j                   j                  S r&   )rp   r7   r   s    r$   r7   zInverseJacobian.shape      }}"""r#   c                 .    | j                   j                  S r&   )rp   r/   r   s    r$   r/   zInverseJacobian.dtype  r   r#   N)r   r   r    r   propertyr7   r/   r"   r#   r$   r   r     s/    + # # # #r#   r   c                 0    t         j                  j                  j                  t	         t
              r S t        j                         rt         t
              r         S t	         t        j                        r j                  dkD  rt        d      t        j                  t        j                                 j                  d    j                  d   k7  rt        d      t         fd fdd fd	d fd		 j                    j                  
      S t         j                  j#                         r_ j                  d    j                  d   k7  rt        d      t         fd fdd fd	d fd	 j                    j                  
      S t%         d      r{t%         d      rot%         d      rct        t'         d      t'         d       j(                  t'         d      t'         d      t'         d       j                    j                        S t+               r G  fddt
              } |       S t	         t,              r6 t/        t0        t2        t4        t6        t8        t:        t<                         S t?        d      )zE
    Convert given object to one suitable for use as a Jacobian.
    rY   zarray must have rank <= 2r   r   zarray must be squarec                     t        |       S r&   )r   rA   Js    r$   <lambda>zasjacobian.<locals>.<lambda>  s    Qr#   c                 L    t        j                         j                  |       S r&   )r   conjTr   s    r$   r   zasjacobian.<locals>.<lambda>  s    #affhjj!*<r#   c                     t        |       S r&   )r   rA   rW   r   s     r$   r   zasjacobian.<locals>.<lambda>  s    uQ{r#   c                 L    t        j                         j                  |       S r&   )r   r   r   r   s     r$   r   zasjacobian.<locals>.<lambda>  s    affhjj!0Dr#   )r   r   r   r   r/   r7   zmatrix must be squarec                     | z  S r&   r"   r   s    r$   r   zasjacobian.<locals>.<lambda>  s	    Qr#   c                 >    j                         j                  | z  S r&   r   r   r   s    r$   r   zasjacobian.<locals>.<lambda>  s    !&&(**q.r#   c                      |       S r&   r"   rA   rW   r   spsolves     r$   r   zasjacobian.<locals>.<lambda>  s    wq!}r#   c                 F     j                         j                  |       S r&   r   r   s     r$   r   zasjacobian.<locals>.<lambda>  s    

A0Fr#   r7   r/   r   r   r   r   rj   rb   )r   r   r   r   rj   rb   r/   r7   c                   D    e Zd Zd Zd fd	Z fdZd fd	Z fdZy)asjacobian.<locals>.Jacc                     || _         y r&   r*   r   s      r$   rj   zasjacobian.<locals>.Jac.update  s	    r#   c                      | j                         }t        |t        j                        rt	        ||      S t
        j                  j                  |      r	 ||      S t        d      NzUnknown matrix type)	r+   
isinstancer'   ndarrayr   scipysparseissparsere   r   rA   rW   mr   r   s       r$   r   zasjacobian.<locals>.Jac.solve  sT    dffIa, A;&\\**1-"1a=($%:;;r#   c                      | j                         }t        |t        j                        rt	        ||      S t
        j                  j                  |      r||z  S t        d      r   )	r+   r   r'   r   r   r   r   r   re   r   rA   r   r   s      r$   r   zasjacobian.<locals>.Jac.matvec  sQ    dffIa,q!9$\\**1-q5L$%:;;r#   c                 :    | j                         }t        |t        j                        r$t	        |j                         j                  |      S t        j                  j                  |      r! |j                         j                  |      S t        d      r   )r+   r   r'   r   r   r   r   r   r   r   re   r   s       r$   r   zasjacobian.<locals>.Jac.rsolve  sj    dffIa, Q//\\**1-"1668::q11$%:;;r#   c                 2    | j                         }t        |t        j                        r$t	        |j                         j                  |      S t        j                  j                  |      r|j                         j                  |z  S t        d      r   )r+   r   r'   r   r   r   r   r   r   r   re   r   s      r$   r   zasjacobian.<locals>.Jac.rmatvec  sg    dffIa,qvvxzz1--\\**1-668::>)$%:;;r#   Nr   )r   r   r    rj   r   r   r   r   )r   r   s   r$   Jacr      s    <<<<r#   r   )r   r   r   r   r   r   krylovz#Cannot convert object to a Jacobianr   ) r   r   linalgr   r   r   inspectisclass
issubclassr'   r   ndimre   
atleast_2dr   r7   r/   r   r   r8   r   callablestrdictr   BroydenSecondAndersonDiagBroydenLinearMixingExcitingMixingr   	TypeError)r   r   r   s   ` @r$   ra   ra     s    ll!!))G!X		
1h 7s
	Arzz	"66A:899MM"**Q-(771:#3442 <:DggQWW	6 	6
 
		q	!771:#455 8<FggQWW	6 	6
 
G	G!4G9Lwq(3 '9 5gg&q(3&q(3%a1gggg' 	' 
!&	<( &	<N u	As	.t\*% +!-#1)+ ,-. 0 	0 =>>r#   c                       e Zd Zd Zd Zd Zy)GenericBroydenc                     t         j                  | |||       || _        || _        t	        | d      rC| j
                  6t        |      }|r!dt        t        |      d      z  |z  | _        y d| _        y y y )Nalpha      ?r   rX   )r   rb   last_flast_xr   r  r   r)   )r   r9   f0rS   normf0s        r$   rb   zGenericBroyden.setup9  sn    tRT*4!djj&8 "XF T"Xq!11F:
 
 '9!r#   c                     t         r&   r   r   r+   r   ry   dfr   df_norms          r$   _updatezGenericBroyden._updateG  r   r#   c           
          || j                   z
  }|| j                  z
  }| j                  ||||t        |      t        |             || _         || _        y r&   )r  r	  r  r   )r   r+   r   r  ry   s        r$   rj   zGenericBroyden.updateJ  sH    __Q2r48T"X6r#   N)r   r   r    rb   r  rj   r"   r#   r$   r  r  8  s    !"r#   r  c                   z    e Zd ZdZd Zed        Zed        Zd Zd Z	ddZ
ddZd	 ZddZd Zd Zd ZddZy
)LowRankMatrixz
    A matrix represented as

    .. math:: \alpha I + \sum_{n=0}^{n=M} c_n d_n^\dagger

    However, if the rank of the matrix reaches the dimension of the vectors,
    full matrix representation will be used thereon.

    c                 X    || _         g | _        g | _        || _        || _        d | _        y r&   )r  csr   r   r/   	collapsed)r   r  r   r/   s       r$   r   zLowRankMatrix.__init__]  s,    

r#   c                     t        g d|d d | gz         \  }}}|| z  }t        ||      D ]#  \  }}	 ||	|       }
 ||||j                  |
      }% |S )N)axpyscaldotcr   )r   ziprd   )rA   r  r  r   r  r  r  wcdas              r$   _matveczLowRankMatrix._matvece  sh    )*B*,Ra&A3,8dDAIBKDAqQ
AQ1661%A   r#   c           	      J   t        |      dk(  r| |z  S t        ddg|dd | gz         \  }}|d   }|t        j                  t        |      |j                        z  }t        |      D ].  \  }}	t        |      D ]  \  }
}|||
fxx    ||	|      z  cc<    0 t        j                  t        |      |j                        }t        |      D ]  \  }
}	 ||	|       ||
<    ||z  }t        ||      }| |z  }t        ||      D ]  \  }} ||||j                  |       } |S )Evaluate w = M^-1 vr   r  r  Nr   r.   )
lenr   r'   identityr/   	enumeratezerosr   r  rd   )rA   r  r  r   r  r  c0Air  jr  qr  qcs                  r$   _solvezLowRankMatrix._solveo  s&    r7a<U7N $VV$4b!fslC
dUBKKBrxx88bMDAq!"1!A#$q!*$ & " HHSWBHH-bMDAq1:AaD "	U
!QKeGQZEArQ166B3'A   r#   c                     | j                    t        j                  | j                   |      S t        j	                  || j
                  | j                  | j                        S )zEvaluate w = M v)r  r'   r   r  r   r  r  r   r   rA   s     r$   r   zLowRankMatrix.matvec  sD    >>%66$..!,,$$Q

DGGTWWEEr#   c                    | j                   8t        j                  | j                   j                  j	                         |      S t
        j                  |t        j                  | j                        | j                  | j                        S )zEvaluate w = M^H v)
r  r'   r   r   r   r  r   r  r   r  r/  s     r$   r   zLowRankMatrix.rmatvec  s\    >>%66$..**//1155$$Q

(;TWWdggNNr#   c                     | j                   t        | j                   |      S t        j                  || j                  | j
                  | j                        S )r"  )r  r   r  r-  r  r  r   r   s      r$   r   zLowRankMatrix.solve  s@    >>%++##Atzz477DGGDDr#   c                    | j                   .t        | j                   j                  j                         |      S t        j                  |t        j                  | j                        | j                  | j                        S )zEvaluate w = M^-H v)
r  r   r   r   r  r-  r'   r  r   r  r   s      r$   r   zLowRankMatrix.rsolve  sX    >>%))..0!44##Arwwtzz':DGGTWWMMr#   c                 X   | j                   5| xj                   |d d d f   |d d d f   j                         z  z  c_         y | j                  j                  |       | j                  j                  |       t        | j                        |j                  kD  r| j                          y y r&   )r  r   r  appendr   r#  rd   collapse)r   r  r  s      r$   r4  zLowRankMatrix.append  s{    >>%NNa$i!DF)..*:::Nqqtww<!&& MMO !r#   Nc                    |t        j                  d| dd       |t        j                  d| dd       | j                  | j                  S | j                  t	        j
                  | j                  | j                        z  }t        | j                  | j                        D ])  \  }}||d d d f   |d d d f   j                         z  z  }+ |S )NzJLowRankMatrix is scipy-internal code, `dtype` should only be None but was z (not handled)   )
stacklevelzILowRankMatrix is scipy-internal code, `copy` should only be None but was r.   )warningswarnr  r  r'   r$  r   r/   r  r  r   r   )r   r/   rc   Gmr  r  s         r$   r   zLowRankMatrix.__array__  s    MM 99>~O%&( MM 99=nN%&( >>%>>!ZZDFF$**==)DAq!AdF)Ad1fINN,,,B *	r#   c                 n    t        j                  | t              | _        d| _        d| _        d| _        y)z0Collapse the low-rank matrix to a full-rank one.)rc   N)r'   r?   r   r  r  r   r  r   s    r$   r5  zLowRankMatrix.collapse  s)    $^<
r#   c                     | j                   y|dkD  sJ t        | j                        |kD  r| j                  dd= | j                  dd= yy)zH
        Reduce the rank of the matrix by dropping all vectors.
        Nr   r  r#  r  r   r   ranks     r$   restart_reducezLowRankMatrix.restart_reduce  sG     >>%axxtww<$

 r#   c                     | j                   y|dkD  sJ t        | j                        |kD  r4| j                  d= | j                  d= t        | j                        |kD  r3yy)zK
        Reduce the rank of the matrix by dropping oldest vectors.
        Nr   r>  r?  s     r$   simple_reducezLowRankMatrix.simple_reduce  sT     >>%axx$''lT!

 $''lT!r#   c                    | j                   y|}||}n|dz
  }| j                  r"t        |t        | j                  d               }t	        dt        ||dz
              }t        | j                        }||k  ryt        j                  | j                        j                  }t        j                  | j                        j                  }t        |d      \  }}t        ||j                  j                               }t        |d      \  }	}
}t        |t        |            }t        ||j                  j                               }t        |      D ]J  }|dd|f   j                         | j                  |<   |dd|f   j                         | j                  |<   L | j                  |d= | j                  |d= y)	a  
        Reduce the rank of the matrix by retaining some SVD components.

        This corresponds to the "Broyden Rank Reduction Inverse"
        algorithm described in [1]_.

        Note that the SVD decomposition can be done by solving only a
        problem whose size is the effective rank of this matrix, which
        is viable even for large problems.

        Parameters
        ----------
        max_rank : int
            Maximum rank of this matrix after reduction.
        to_retain : int, optional
            Number of SVD components to retain when reduction is done
            (ie. rank > max_rank). Default is ``max_rank - 2``.

        References
        ----------
        .. [1] B.A. van der Rotten, PhD thesis,
           "A limited memory Broyden method to solve high-dimensional
           systems of nonlinear equations". Mathematisch Instituut,
           Universiteit Leiden, The Netherlands (2003).

           https://web.archive.org/web/20161022015821/http://www.math.leidenuniv.nl/scripties/Rotten.pdf

        NrY   r   r   economic)modeF)full_matrices)r  r  rh   r#  r)   r'   r?   r   r   r	   r   r   r
   r   rf   rc   )r   max_rank	to_retainr   r+  r   CDRUSWHks                r$   
svd_reducezLowRankMatrix.svd_reduce  sc   : >>% AAA77As4771:'A3q!A#;Lq5HHTWWHHTWW!*%113388:q.1b3r7O24499;qA1Q3DGGAJ1Q3DGGAJ  GGABKGGABKr#   r   r   r&   )r   r   r    r!   r   staticmethodr   r-  r   r   r   r   r4  r   r5  rA  rC  rQ  r"   r#   r$   r  r  R  sj        6FOEN	"		?r#   r  a  
    alpha : float, optional
        Initial guess for the Jacobian is ``(-1/alpha)``.
    reduction_method : str or tuple, optional
        Method used in ensuring that the rank of the Broyden matrix
        stays low. Can either be a string giving the name of the method,
        or a tuple of the form ``(method, param1, param2, ...)``
        that gives the name of the method and values for additional parameters.

        Methods available:

            - ``restart``: drop all matrix columns. Has no extra parameters.
            - ``simple``: drop oldest matrix column. Has no extra parameters.
            - ``svd``: keep only the most significant SVD components.
              Takes an extra parameter, ``to_retain``, which determines the
              number of SVD components to retain when rank reduction is done.
              Default is ``max_rank - 2``.

    max_rank : int, optional
        Maximum rank for the Broyden matrix.
        Default is infinity (i.e., no rank reduction).
    broyden_paramsc                   F    e Zd ZdZddZd Zd ZddZd ZddZ	d	 Z
d
 Zy)r   a  
    Find a root of a function, using Broyden's first Jacobian approximation.

    This method is also known as \"Broyden's good method\".

    Parameters
    ----------
    %(params_basic)s
    %(broyden_params)s
    %(params_extra)s

    See Also
    --------
    root : Interface to root finding algorithms for multivariate
           functions. See ``method='broyden1'`` in particular.

    Notes
    -----
    This algorithm implements the inverse Jacobian Quasi-Newton update

    .. math:: H_+ = H + (dx - H df) dx^\dagger H / ( dx^\dagger H df)

    which corresponds to Broyden's first Jacobian update

    .. math:: J_+ = J + (df - J dx) dx^\dagger / dx^\dagger dx


    References
    ----------
    .. [1] B.A. van der Rotten, PhD thesis,
       \"A limited memory Broyden method to solve high-dimensional
       systems of nonlinear equations\". Mathematisch Instituut,
       Universiteit Leiden, The Netherlands (2003).

       https://web.archive.org/web/20161022015821/http://www.math.leidenuniv.nl/scripties/Rotten.pdf

    Examples
    --------
    The following functions define a system of nonlinear equations

    >>> def fun(x):
    ...     return [x[0]  + 0.5 * (x[0] - x[1])**3 - 1.0,
    ...             0.5 * (x[1] - x[0])**3 + x[1]]

    A solution can be obtained as follows.

    >>> from scipy import optimize
    >>> sol = optimize.broyden1(fun, [0, 0])
    >>> sol
    array([0.84116396, 0.15883641])

    Nc                 L    t         j                          | _        d  _        |t        j
                  }| _        t        |t              rdn
|dd  |d   }|dz
  fz   |dk(  r fd _	        y |dk(  r fd _	        y |dk(  r fd	 _	        y t        d
|z        )Nr"   r   r   r
   c                  6     j                   j                    S r&   )r;  rQ  reduce_paramsr   s   r$   r   z'BroydenFirst.__init__.<locals>.<lambda>}  s    #5477#5#5}#Er#   simplec                  6     j                   j                    S r&   )r;  rC  rW  s   r$   r   z'BroydenFirst.__init__.<locals>.<lambda>  s    #8477#8#8-#Hr#   restartc                  6     j                   j                    S r&   )r;  rA  rW  s   r$   r   z'BroydenFirst.__init__.<locals>.<lambda>  s    #9477#9#9=#Ir#   z"Unknown rank reduction method '%s')r  r   r  r;  r'   r@   rH  r   r   _reducere   )r   r  reduction_methodrH  rX  s   `   @r$   r   zBroydenFirst.__init__l  s    %
vvH &,M,QR0M/2!A-7u$EDL)HDL*IDLA-. / /r#   c                     t         j                  | |||       t        | j                   | j                  d   | j
                        | _        y )Nr   )r  rb   r  r  r7   r/   r;  r   s       r$   rb   zBroydenFirst.setup  s8    T1a.TZZ]DJJGr#   c                 ,    t        | j                        S r&   )r   r;  r   s    r$   r   zBroydenFirst.todense  s    477|r#   c                    | j                   j                  |      }t        j                  |      j	                         sL| j                  | j                  | j                  | j                         | j                   j                  |      S |S r&   )	r;  r   r'   r=   r>   rb   r	  r  rS   )r   r   rW   rs       r$   r   zBroydenFirst.solve  s\    GGNN1{{1~!!#JJt{{DKK;77>>!$$r#   c                 8    | j                   j                  |      S r&   )r;  r   r   r   s     r$   r   zBroydenFirst.matvec  s    ww}}Qr#   c                 8    | j                   j                  |      S r&   )r;  r   r   r   rW   s      r$   r   zBroydenFirst.rsolve  s    wwq!!r#   c                 8    | j                   j                  |      S r&   )r;  r   rd  s     r$   r   zBroydenFirst.rmatvec  s    ww~~a  r#   c                     | j                          | j                  j                  |      }|| j                  j                  |      z
  }|t	        ||      z  }	| j                  j                  ||	       y r&   )r]  r;  r   r   r   r4  
r   r+   r   ry   r  r   r  rA   r  r  s
             r$   r  zBroydenFirst._update  sU    GGOOB##ROq!r#   )Nr[  Nr   )r   r   r    r!   r   rb   r   r   r   r   r   r  r"   r#   r$   r   r   6  s1    3j/4H "!r#   r   c                       e Zd ZdZd Zy)r   aK  
    Find a root of a function, using Broyden's second Jacobian approximation.

    This method is also known as "Broyden's bad method".

    Parameters
    ----------
    %(params_basic)s
    %(broyden_params)s
    %(params_extra)s

    See Also
    --------
    root : Interface to root finding algorithms for multivariate
           functions. See ``method='broyden2'`` in particular.

    Notes
    -----
    This algorithm implements the inverse Jacobian Quasi-Newton update

    .. math:: H_+ = H + (dx - H df) df^\dagger / ( df^\dagger df)

    corresponding to Broyden's second method.

    References
    ----------
    .. [1] B.A. van der Rotten, PhD thesis,
       "A limited memory Broyden method to solve high-dimensional
       systems of nonlinear equations". Mathematisch Instituut,
       Universiteit Leiden, The Netherlands (2003).

       https://web.archive.org/web/20161022015821/http://www.math.leidenuniv.nl/scripties/Rotten.pdf

    Examples
    --------
    The following functions define a system of nonlinear equations

    >>> def fun(x):
    ...     return [x[0]  + 0.5 * (x[0] - x[1])**3 - 1.0,
    ...             0.5 * (x[1] - x[0])**3 + x[1]]

    A solution can be obtained as follows.

    >>> from scipy import optimize
    >>> sol = optimize.broyden2(fun, [0, 0])
    >>> sol
    array([0.84116365, 0.15883529])

    c                     | j                          |}|| j                  j                  |      z
  }||dz  z  }	| j                  j                  ||	       y NrY   )r]  r;  r   r4  ri  s
             r$   r  zBroydenSecond._update  sF    ##
Nq!r#   N)r   r   r    r!   r  r"   r#   r$   r   r     s    0dr#   r   c                   ,    e Zd ZdZddZddZd Zd Zy)	r   a  
    Find a root of a function, using (extended) Anderson mixing.

    The Jacobian is formed by for a 'best' solution in the space
    spanned by last `M` vectors. As a result, only a MxM matrix
    inversions and MxN multiplications are required. [Ey]_

    Parameters
    ----------
    %(params_basic)s
    alpha : float, optional
        Initial guess for the Jacobian is (-1/alpha).
    M : float, optional
        Number of previous vectors to retain. Defaults to 5.
    w0 : float, optional
        Regularization parameter for numerical stability.
        Compared to unity, good values of the order of 0.01.
    %(params_extra)s

    See Also
    --------
    root : Interface to root finding algorithms for multivariate
           functions. See ``method='anderson'`` in particular.

    References
    ----------
    .. [Ey] V. Eyert, J. Comp. Phys., 124, 271 (1996).

    Examples
    --------
    The following functions define a system of nonlinear equations

    >>> def fun(x):
    ...     return [x[0]  + 0.5 * (x[0] - x[1])**3 - 1.0,
    ...             0.5 * (x[1] - x[0])**3 + x[1]]

    A solution can be obtained as follows.

    >>> from scipy import optimize
    >>> sol = optimize.anderson(fun, [0, 0])
    >>> sol
    array([0.84116588, 0.15883789])

    Nc                     t         j                  |        || _        || _        g | _        g | _        d | _        || _        y r&   )r  r   r  Mry   r  r|   w0)r   r  rp  ro  s       r$   r   zAnderson.__init__/  s:    %

r#   c                    | j                    |z  }t        | j                        }|dk(  r|S t        j                  ||j
                        }t        |      D ]  }t        | j                  |   |      ||<     	 t        | j                  |      }t        |      D ]7  }|||   | j                  |   | j                   | j                  |   z  z   z  z  }9 |S # t        $ r# | j                  d d = | j                  d d = |cY S w xY wNr   r.   )r  r#  ry   r'   emptyr/   rf   r   r  r   r  r   )	r   r   rW   ry   r   df_frP  r|   r   s	            r$   r   zAnderson.solve8  s    jj[]L6Ixx)qA4771:q)DG 	$&&$'E qA%(DGGAJDGGAJ)>>??B 	  	

I		s   ;C )DDc           
      B   | | j                   z  }t        | j                        }|dk(  r|S t        j                  ||j
                        }t        |      D ]  }t        | j                  |   |      ||<     t        j                  ||f|j
                        }t        |      D ]  }t        |      D ]  }t        | j                  |   | j                  |         |||f<   ||k(  s4| j                  dk7  sD|||fxx   t        | j                  |   | j                  |         | j                  dz  z  | j                   z  z  cc<     t        ||      }	t        |      D ]7  }
||	|
   | j                  |
   | j                  |
   | j                   z  z   z  z  }9 |S )Nr   r.   rY   )r  r#  ry   r'   rs  r/   rf   r   r  rp  r   )r   r   ry   r   rt  rP  br)  r*  r|   r   s              r$   r   zAnderson.matvecO  s_   R

]L6Ixx)qA4771:q)DG  HHaV177+qA1Xdggaj$''!*5!A#6dgglacFd4771:twwqz:477A:EdjjPPF  
 aqA%(DGGAJDJJ)>>??B 	r#   c                 8   | j                   dk(  ry | j                  j                  |       | j                  j                  |       t	        | j                        | j                   kD  rY| j                  j                  d       | j                  j                  d       t	        | j                        | j                   kD  rYt	        | j                        }t        j                  ||f|j                        }t        |      D ][  }	t        |	|      D ]J  }
|	|
k(  r| j                  dz  }nd}d|z   t        | j                  |	   | j                  |
         z  ||	|
f<   L ] |t        j                  |d      j                  j                         z  }|| _        y )Nr   r.   rY   r   )ro  ry   r4  r  r#  popr'   r&  r/   rf   rp  r   triur   r   r  )r   r+   r   ry   r  r   r  r   r  r)  r*  wds               r$   r  zAnderson._updatef  s-   66Q;rr$''lTVV#GGKKNGGKKN $''lTVV# LHHaV177+qA1a[6!BBB$TWWQZ <<!A# !  	
RWWQ]__!!##r#   )Nr      r   )r   r   r    r!   r   r   r   r  r"   r#   r$   r   r     s    +L..r#   r   c                   F    e Zd ZdZddZd ZddZd ZddZd Z	d	 Z
d
 Zy)r   a,  
    Find a root of a function, using diagonal Broyden Jacobian approximation.

    The Jacobian approximation is derived from previous iterations, by
    retaining only the diagonal of Broyden matrices.

    .. warning::

       This algorithm may be useful for specific problems, but whether
       it will work may depend strongly on the problem.

    Parameters
    ----------
    %(params_basic)s
    alpha : float, optional
        Initial guess for the Jacobian is (-1/alpha).
    %(params_extra)s

    See Also
    --------
    root : Interface to root finding algorithms for multivariate
           functions. See ``method='diagbroyden'`` in particular.

    Examples
    --------
    The following functions define a system of nonlinear equations

    >>> def fun(x):
    ...     return [x[0]  + 0.5 * (x[0] - x[1])**3 - 1.0,
    ...             0.5 * (x[1] - x[0])**3 + x[1]]

    A solution can be obtained as follows.

    >>> from scipy import optimize
    >>> sol = optimize.diagbroyden(fun, [0, 0])
    >>> sol
    array([0.84116403, 0.15883384])

    Nc                 <    t         j                  |        || _        y r&   r  r   r  r   r  s     r$   r   zDiagBroyden.__init__      %
r#   c                     t         j                  | |||       t        j                  | j                  d   fd| j
                  z  | j                        | _        y )Nr   r   r.   )r  rb   r'   fullr7   r  r/   r  r   s       r$   rb   zDiagBroyden.setup  sA    T1a.$**Q-)1tzz>Lr#   c                 "    | | j                   z  S r&   r  rf  s      r$   r   zDiagBroyden.solve      rDFF{r#   c                 "    | | j                   z  S r&   r  rd  s     r$   r   zDiagBroyden.matvec  r  r#   c                 >    | | j                   j                         z  S r&   r  r   rf  s      r$   r   zDiagBroyden.rsolve      rDFFKKM!!r#   c                 >    | | j                   j                         z  S r&   r  rd  s     r$   r   zDiagBroyden.rmatvec  r  r#   c                 B    t        j                  | j                         S r&   )r'   diagr  r   s    r$   r   zDiagBroyden.todense  s    wwwr#   c                 `    | xj                   || j                   |z  z   |z  |dz  z  z  c_         y rl  r  r  s          r$   r  zDiagBroyden._update  s*    2r	>2%gqj00r#   r&   r   r   r   r    r!   r   rb   r   r   r   r   r   r  r"   r#   r$   r   r     s1    &PM"" 1r#   r   c                   @    e Zd ZdZd
dZddZd ZddZd Zd Z	d	 Z
y)r   a  
    Find a root of a function, using a scalar Jacobian approximation.

    .. warning::

       This algorithm may be useful for specific problems, but whether
       it will work may depend strongly on the problem.

    Parameters
    ----------
    %(params_basic)s
    alpha : float, optional
        The Jacobian approximation is (-1/alpha).
    %(params_extra)s

    See Also
    --------
    root : Interface to root finding algorithms for multivariate
           functions. See ``method='linearmixing'`` in particular.

    Nc                 <    t         j                  |        || _        y r&   r~  r  s     r$   r   zLinearMixing.__init__  r  r#   c                 "    | | j                   z  S r&   r  rf  s      r$   r   zLinearMixing.solve      r$**}r#   c                 "    | | j                   z  S r&   r  rd  s     r$   r   zLinearMixing.matvec  r  r#   c                 H    | t        j                  | j                        z  S r&   r'   r   r  rf  s      r$   r   zLinearMixing.rsolve      r"''$**%%%r#   c                 H    | t        j                  | j                        z  S r&   r  rd  s     r$   r   zLinearMixing.rmatvec  r  r#   c                     t        j                  t        j                  | j                  d   d| j                  z              S )Nr   )r'   r  r  r7   r  r   s    r$   r   zLinearMixing.todense  s,    wwrwwtzz!}bm<==r#   c                      y r&   r"   r  s          r$   r  zLinearMixing._update  r   r#   r&   r   )r   r   r    r!   r   r   r   r   r   r   r  r"   r#   r$   r   r     s*    ,&&>r#   r   c                   F    e Zd ZdZddZd ZddZd ZddZd Z	d	 Z
d
 Zy)r  a  
    Find a root of a function, using a tuned diagonal Jacobian approximation.

    The Jacobian matrix is diagonal and is tuned on each iteration.

    .. warning::

       This algorithm may be useful for specific problems, but whether
       it will work may depend strongly on the problem.

    See Also
    --------
    root : Interface to root finding algorithms for multivariate
           functions. See ``method='excitingmixing'`` in particular.

    Parameters
    ----------
    %(params_basic)s
    alpha : float, optional
        Initial Jacobian approximation is (-1/alpha).
    alphamax : float, optional
        The entries of the diagonal Jacobian are kept in the range
        ``[alpha, alphamax]``.
    %(params_extra)s
    Nc                 X    t         j                  |        || _        || _        d | _        y r&   )r  r   r  alphamaxbeta)r   r  r  s      r$   r   zExcitingMixing.__init__  s%    %
 	r#   c                     t         j                  | |||       t        j                  | j                  d   f| j
                  | j                        | _        y rr  )r  rb   r'   r  r7   r  r/   r  r   s       r$   rb   zExcitingMixing.setup  s=    T1a.GGTZZ],djj

K	r#   c                 "    | | j                   z  S r&   r  rf  s      r$   r   zExcitingMixing.solve      r$))|r#   c                 "    | | j                   z  S r&   r  rd  s     r$   r   zExcitingMixing.matvec  r  r#   c                 >    | | j                   j                         z  S r&   r  r   rf  s      r$   r   zExcitingMixing.rsolve!      r$)).."""r#   c                 >    | | j                   j                         z  S r&   r  rd  s     r$   r   zExcitingMixing.rmatvec$  r  r#   c                 F    t        j                  d| j                  z        S )Nr  )r'   r  r  r   s    r$   r   zExcitingMixing.todense'  s    wwr$))|$$r#   c                    || j                   z  dkD  }| j                  |xx   | j                  z  cc<   | j                  | j                  | <   t        j                  | j                  d| j
                  | j                         y )Nr   )out)r  r  r  r'   clipr  )r   r+   r   ry   r  r   r  incrs           r$   r  zExcitingMixing._update*  s\    }q 		$4::%::		4%
		1dmm;r#   )NrX   r   r  r"   r#   r$   r  r    s0    4L##%<r#   r  c                   <    e Zd ZdZ	 	 d	dZd Zd Zd
dZd Zd Z	y)r   a  
    Find a root of a function, using Krylov approximation for inverse Jacobian.

    This method is suitable for solving large-scale problems.

    Parameters
    ----------
    %(params_basic)s
    rdiff : float, optional
        Relative step size to use in numerical differentiation.
    method : str or callable, optional
        Krylov method to use to approximate the Jacobian.  Can be a string,
        or a function implementing the same interface as the iterative
        solvers in `scipy.sparse.linalg`. If a string, needs to be one of:
        ``'lgmres'``, ``'gmres'``, ``'bicgstab'``, ``'cgs'``, ``'minres'``,
        ``'tfqmr'``.

        The default is `scipy.sparse.linalg.lgmres`.
    inner_maxiter : int, optional
        Parameter to pass to the "inner" Krylov solver: maximum number of
        iterations. Iteration will stop after maxiter steps even if the
        specified tolerance has not been achieved.
    inner_M : LinearOperator or InverseJacobian
        Preconditioner for the inner Krylov iteration.
        Note that you can use also inverse Jacobians as (adaptive)
        preconditioners. For example,

        >>> from scipy.optimize import BroydenFirst, KrylovJacobian
        >>> from scipy.optimize import InverseJacobian
        >>> jac = BroydenFirst()
        >>> kjac = KrylovJacobian(inner_M=InverseJacobian(jac))

        If the preconditioner has a method named 'update', it will be called
        as ``update(x, f)`` after each nonlinear step, with ``x`` giving
        the current point, and ``f`` the current function value.
    outer_k : int, optional
        Size of the subspace kept across LGMRES nonlinear iterations.
        See `scipy.sparse.linalg.lgmres` for details.
    inner_kwargs : kwargs
        Keyword parameters for the "inner" Krylov solver
        (defined with `method`). Parameter names must start with
        the `inner_` prefix which will be stripped before passing on
        the inner method. See, e.g., `scipy.sparse.linalg.gmres` for details.
    %(params_extra)s

    See Also
    --------
    root : Interface to root finding algorithms for multivariate
           functions. See ``method='krylov'`` in particular.
    scipy.sparse.linalg.gmres
    scipy.sparse.linalg.lgmres

    Notes
    -----
    This function implements a Newton-Krylov solver. The basic idea is
    to compute the inverse of the Jacobian with an iterative Krylov
    method. These methods require only evaluating the Jacobian-vector
    products, which are conveniently approximated by a finite difference:

    .. math:: J v \approx (f(x + \omega*v/|v|) - f(x)) / \omega

    Due to the use of iterative matrix inverses, these methods can
    deal with large nonlinear problems.

    SciPy's `scipy.sparse.linalg` module offers a selection of Krylov
    solvers to choose from. The default here is `lgmres`, which is a
    variant of restarted GMRES iteration that reuses some of the
    information obtained in the previous Newton steps to invert
    Jacobians in subsequent steps.

    For a review on Newton-Krylov methods, see for example [1]_,
    and for the LGMRES sparse inverse method, see [2]_.

    References
    ----------
    .. [1] C. T. Kelley, Solving Nonlinear Equations with Newton's Method,
           SIAM, pp.57-83, 2003.
           :doi:`10.1137/1.9780898718898.ch3`
    .. [2] D.A. Knoll and D.E. Keyes, J. Comp. Phys. 193, 357 (2004).
           :doi:`10.1016/j.jcp.2003.08.010`
    .. [3] A.H. Baker and E.R. Jessup and T. Manteuffel,
           SIAM J. Matrix Anal. Appl. 26, 962 (2005).
           :doi:`10.1137/S0895479803422014`

    Examples
    --------
    The following functions define a system of nonlinear equations

    >>> def fun(x):
    ...     return [x[0] + 0.5 * x[1] - 1.0,
    ...             0.5 * (x[1] - x[0]) ** 2]

    A solution can be obtained as follows.

    >>> from scipy import optimize
    >>> sol = optimize.newton_krylov(fun, [0, 0])
    >>> sol
    array([0.66731771, 0.66536458])

    Nc                 J   || _         || _        t        t        j                  j
                  j                  t        j                  j
                  j                  t        j                  j
                  j                  t        j                  j
                  j                  t        j                  j
                  j                  t        j                  j
                  j                        j                  ||      | _        t        || j                         | _        | j                  t        j                  j
                  j                  u r<|| j                  d<   d| j                  d<   | j                  j                  dd       nR| j                  t        j                  j
                  j                   t        j                  j
                  j                  t        j                  j
                  j                  fv r| j                  j                  dd       n| j                  t        j                  j
                  j                  u r|| j                  d<   d| j                  d<   | j                  j                  d	g        | j                  j                  d
d       | j                  j                  dd       | j                  j                  dd       |j#                         D ]6  \  }}|j%                  d      st'        d|z        || j                  |dd  <   8 y )N)bicgstabgmreslgmrescgsminrestfqmr)rr   ro  r[  r   rr   atolr   outer_kouter_vprepend_outer_vTstore_outer_AvFinner_zUnknown parameter %s   )preconditionerr   r   r   r   r   r  r  r  r  r  r  getmethod	method_kw
setdefaultgcrotmkr   
startswithre   )	r   r   r  inner_maxiterinner_Mr  r   keyr   s	            r$   r   zKrylovJacobian.__init__  s4   %
 \\((11,,%%++<<&&--##''<<&&--,,%%++ c&&! 	 mt7J7JK;;%,,--333(5DNN9%()DNN9%NN%%fa0[[U\\0088"\\0099"\\00446 6 NN%%fa0[[ELL//666(/DNN9%()DNN9%NN%%i4NN%%&7> NN%%&6>NN%%fa0((*JC>>(+ !7#!=>>&+DNN3qr7# %r#   c                     t        | j                        j                         }t        | j                        j                         }| j                  t        d|      z  t        d|      z  | _        y )Nr   )r   r9   r)   r
  r   omega)r   mxmfs      r$   _update_diff_stepz KrylovJacobian._update_diff_step  sO    \\ZZ#a*,s1bz9
r#   c                 f   t        |      }|dk(  rd|z  S | j                  |z  }| j                  | j                  ||z  z         | j                  z
  |z  }t        j                  t        j                  |            s3t        j                  t        j                  |            rt        d      |S )Nr   z$Function returned non-finite results)	r   r  rS   r9   r
  r'   r>   r=   re   )r   rA   nvscrb  s        r$   r   zKrylovJacobian.matvec  s    !W7Q3JZZ"_YYtwwA~&0B6vvbkk!n%"&&Q*@CDDr#   c                     d| j                   v r- | j                  | j                  |fi | j                   \  }}|S  | j                  | j                  |fd|i| j                   \  }}|S )Nrtol)r  r  op)r   rhsrW   solr   s        r$   r   zKrylovJacobian.solve  sg    T^^##DGGSCDNNCIC 
 $DGGSMsMdnnMIC
r#   c                     || _         || _        | j                          | j                  4t	        | j                  d      r| j                  j                  ||       y y y )Nrj   )r9   r
  r  r  r   rj   )r   r+   r   s      r$   rj   zKrylovJacobian.update  sZ      *t**H5##**1a0 6 +r#   c                    t         j                  | |||       || _        || _        t        j
                  j                  j                  |       | _        | j                  1t        j                  |j                        j                  dz  | _	        | j                          | j                  5t!        | j                  d      r| j                  j                  |||       y y y )Nr  rb   )r   rb   r9   r
  r   r   r   aslinearoperatorr  r   r'   r   r/   r   r  r  r   )r   r+   r   rS   s       r$   rb   zKrylovJacobian.setup  s    tQ4(,,%%66t<::!''*..48DJ  *t**G4##))!Q5 5 +r#   )Nr     N
   r   )
r   r   r    r!   r   r  r   r   rj   rb   r"   r#   r$   r   r   5  s2    cJ CE')-,^:
16r#   r   c           	      L   t        |j                        }|\  }}}}}}}	t        t        |t	        |       d |            }
dj                  |
D cg c]  \  }}| d| c}}      }|rd|z   }dj                  |
D cg c]  \  }}| d|  c}}      }|r|dz   }|rt        d|z        d}|t        | ||j                  |      z  }i }|j                  t                      t        ||       ||    }|j                  |_        t        |       |S c c}}w c c}}w )a  
    Construct a solver wrapper with given name and Jacobian approx.

    It inspects the keyword arguments of ``jac.__init__``, and allows to
    use the same arguments in the wrapper function, in addition to the
    keyword arguments of `nonlin_solve`

    Nz, =zUnexpected signature %sa  
def %(name)s(F, xin, iter=None %(kw)s, verbose=False, maxiter=None,
             f_tol=None, f_rtol=None, x_tol=None, x_rtol=None,
             tol_norm=None, line_search='armijo', callback=None, **kw):
    jac = %(jac)s(%(kwkw)s **kw)
    return nonlin_solve(F, xin, jac, iter, verbose, maxiter,
                        f_tol, f_rtol, x_tol, x_rtol, tol_norm, line_search,
                        callback)
)r   r   jackwkw)_getfullargspecr   listr  r#  joinre   r   r   rj   globalsexecr!   rH   )r   r  	signatureargsvarargsvarkwdefaults
kwonlyargs
kwdefaults_kwargsrP  rA   kw_strkwkw_strwrappernsrS   s                     r$   _nonlin_wrapperr    s4     -I@I=D'5(J
A#dCM>?+X67FYY8A1#Qqe89Fyy8AQCq*89Hd?2Y>??G $6s||"*, ,G	BIIgi"d8D;;DLTNK; 9 9s   D
D 
r   r   r   r   r   r   r   )r   NFNNNNNNrU   NFT)rU   g:0yE>r   )<r   rk   r9  numpyr'   r   r   r   scipy.linalgr   r   r   r	   r
   r   scipy.sparse.linalgr   scipy.sparser   scipy._lib._utilr   r   r  _linesearchr   r   __all__	Exceptionr   r,   r3   r;   rB   r   striprF   rH   r   ri   r_   r   r   ra   r  r  r   r   r   r   r   r  r   r  r   r   r   r   r   r   r   r"   r#   r$   <module>r     s    
   $ $ ? ?   ' + F CJ	I 	   	(P 	a1
h/
 ?DKO?C48P"f 	  FJ!*Z9< 9<@E EP# #&Y?@X 4I IX * 	+  0o> od9L 9@U~ UxA1. A1H+> +\8<^ 8<~C6X C6T)X :|4:}5:x0~|<m[9 !1>B@r#   