
    tKg,                     d    d dl Zd dlmZ ddlmZ ddlmZ g dZd Zd Z	dd	Z
dd
ZddZddZy)    N)normalize_axis_index   )_ni_support)	_nd_image)fourier_gaussianfourier_uniformfourier_ellipsoidfourier_shiftc                    | |j                   j                  t        j                  t        j                  t        j
                  fv r-t        j                  |j                  |j                         } | S t        j                  |j                  t        j                        } | S t        |       t        u rn| t        j                  t        j                  t        j
                  t        j                  fvrt        d      t        j                  |j                  |       } | S | j                  |j                  k7  rt        d      | S Ndtypezoutput type not supportedzoutput shape not correct)
r   typenp	complex64
complex128float32zerosshapefloat64RuntimeErroroutputinputs     Z/home/alanp/www/video.onchill/myenv/lib/python3.12/site-packages/scipy/ndimage/_fourier.py_get_output_fourierr   (   s    ~;;bmmRZZHHXXekk=F M XXekk<F M 
f	",,**bjj2 2:;;%++V4 M 
	$566M    c                 <   | |j                   j                  t        j                  t        j                  fv r-t        j
                  |j                  |j                         } | S t        j
                  |j                  t        j                        } | S t        |       t        u rP| t        j                  t        j                  fvrt        d      t        j
                  |j                  |       } | S | j                  |j                  k7  rt        d      | S r   )r   r   r   r   r   r   r   r   r   s     r   _get_output_fourier_complexr   8   s    ~;;bmm<<XXekk=F M XXekk?F M 
f	",,66:;;%++V4 M 
	$566Mr   c                 ~   t        j                  |       } t        ||       }t        || j                        }t        j                  || j                        }t        j                  |t         j                        }|j                  j                  s|j                         }t        j                  | ||||d       |S )a  
    Multidimensional Gaussian fourier filter.

    The array is multiplied with the fourier transform of a Gaussian
    kernel.

    Parameters
    ----------
    input : array_like
        The input array.
    sigma : float or sequence
        The sigma of the Gaussian kernel. If a float, `sigma` is the same for
        all axes. If a sequence, `sigma` has to contain one value for each
        axis.
    n : int, optional
        If `n` is negative (default), then the input is assumed to be the
        result of a complex fft.
        If `n` is larger than or equal to zero, the input is assumed to be the
        result of a real fft, and `n` gives the length of the array before
        transformation along the real transform direction.
    axis : int, optional
        The axis of the real transform.
    output : ndarray, optional
        If given, the result of filtering the input is placed in this array.

    Returns
    -------
    fourier_gaussian : ndarray
        The filtered input.

    Examples
    --------
    >>> from scipy import ndimage, datasets
    >>> import numpy.fft
    >>> import matplotlib.pyplot as plt
    >>> fig, (ax1, ax2) = plt.subplots(1, 2)
    >>> plt.gray()  # show the filtered result in grayscale
    >>> ascent = datasets.ascent()
    >>> input_ = numpy.fft.fft2(ascent)
    >>> result = ndimage.fourier_gaussian(input_, sigma=4)
    >>> result = numpy.fft.ifft2(result)
    >>> ax1.imshow(ascent)
    >>> ax2.imshow(result.real)  # the imaginary part is an artifact
    >>> plt.show()
    r   r   r   asarrayr   r   ndimr   _normalize_sequencer   flags
contiguouscopyr   fourier_filter)r   sigmanaxisr   sigmass         r   r   r   G   s    \ JJuE /Fejj1D,,UEJJ?FZZbjj1F<<""UFAtVQ?Mr   c                 ~   t        j                  |       } t        ||       }t        || j                        }t        j                  || j                        }t        j                  |t         j                        }|j                  j                  s|j                         }t        j                  | ||||d       |S )a  
    Multidimensional uniform fourier filter.

    The array is multiplied with the Fourier transform of a box of given
    size.

    Parameters
    ----------
    input : array_like
        The input array.
    size : float or sequence
        The size of the box used for filtering.
        If a float, `size` is the same for all axes. If a sequence, `size` has
        to contain one value for each axis.
    n : int, optional
        If `n` is negative (default), then the input is assumed to be the
        result of a complex fft.
        If `n` is larger than or equal to zero, the input is assumed to be the
        result of a real fft, and `n` gives the length of the array before
        transformation along the real transform direction.
    axis : int, optional
        The axis of the real transform.
    output : ndarray, optional
        If given, the result of filtering the input is placed in this array.

    Returns
    -------
    fourier_uniform : ndarray
        The filtered input.

    Examples
    --------
    >>> from scipy import ndimage, datasets
    >>> import numpy.fft
    >>> import matplotlib.pyplot as plt
    >>> fig, (ax1, ax2) = plt.subplots(1, 2)
    >>> plt.gray()  # show the filtered result in grayscale
    >>> ascent = datasets.ascent()
    >>> input_ = numpy.fft.fft2(ascent)
    >>> result = ndimage.fourier_uniform(input_, size=20)
    >>> result = numpy.fft.ifft2(result)
    >>> ax1.imshow(ascent)
    >>> ax2.imshow(result.real)  # the imaginary part is an artifact
    >>> plt.show()
    r   r   r!   r   sizer*   r+   r   sizess         r   r   r      s    \ JJuE /Fejj1D++D%**=EJJuBJJ/E;;!!

UE1dFA>Mr   c                    t        j                  |       } | j                  dkD  rt        d      t	        ||       }|j
                  dk(  r|S t        || j                        }t        j                  || j                        }t        j                  |t         j                        }|j                  j                  s|j                         }t        j                  | ||||d       |S )ah  
    Multidimensional ellipsoid Fourier filter.

    The array is multiplied with the fourier transform of an ellipsoid of
    given sizes.

    Parameters
    ----------
    input : array_like
        The input array.
    size : float or sequence
        The size of the box used for filtering.
        If a float, `size` is the same for all axes. If a sequence, `size` has
        to contain one value for each axis.
    n : int, optional
        If `n` is negative (default), then the input is assumed to be the
        result of a complex fft.
        If `n` is larger than or equal to zero, the input is assumed to be the
        result of a real fft, and `n` gives the length of the array before
        transformation along the real transform direction.
    axis : int, optional
        The axis of the real transform.
    output : ndarray, optional
        If given, the result of filtering the input is placed in this array.

    Returns
    -------
    fourier_ellipsoid : ndarray
        The filtered input.

    Notes
    -----
    This function is implemented for arrays of rank 1, 2, or 3.

    Examples
    --------
    >>> from scipy import ndimage, datasets
    >>> import numpy.fft
    >>> import matplotlib.pyplot as plt
    >>> fig, (ax1, ax2) = plt.subplots(1, 2)
    >>> plt.gray()  # show the filtered result in grayscale
    >>> ascent = datasets.ascent()
    >>> input_ = numpy.fft.fft2(ascent)
    >>> result = ndimage.fourier_ellipsoid(input_, size=20)
    >>> result = numpy.fft.ifft2(result)
    >>> ax1.imshow(ascent)
    >>> ax2.imshow(result.real)  # the imaginary part is an artifact
    >>> plt.show()
       z'Only 1d, 2d and 3d inputs are supportedr   r      )r   r"   r#   NotImplementedErrorr   r/   r   r   r$   r   r%   r&   r'   r   r(   r.   s         r   r	   r	      s    d JJuEzzA~!"KLL /F{{a ejj1D++D%**=EJJuBJJ/E;;!!

UE1dFA>Mr   c                 |   t        j                  |       } t        ||       }t        || j                        }t        j                  || j                        }t        j                  |t         j                        }|j                  j                  s|j                         }t        j                  | ||||       |S )a  
    Multidimensional Fourier shift filter.

    The array is multiplied with the Fourier transform of a shift operation.

    Parameters
    ----------
    input : array_like
        The input array.
    shift : float or sequence
        The size of the box used for filtering.
        If a float, `shift` is the same for all axes. If a sequence, `shift`
        has to contain one value for each axis.
    n : int, optional
        If `n` is negative (default), then the input is assumed to be the
        result of a complex fft.
        If `n` is larger than or equal to zero, the input is assumed to be the
        result of a real fft, and `n` gives the length of the array before
        transformation along the real transform direction.
    axis : int, optional
        The axis of the real transform.
    output : ndarray, optional
        If given, the result of shifting the input is placed in this array.

    Returns
    -------
    fourier_shift : ndarray
        The shifted input.

    Examples
    --------
    >>> from scipy import ndimage, datasets
    >>> import matplotlib.pyplot as plt
    >>> import numpy.fft
    >>> fig, (ax1, ax2) = plt.subplots(1, 2)
    >>> plt.gray()  # show the filtered result in grayscale
    >>> ascent = datasets.ascent()
    >>> input_ = numpy.fft.fft2(ascent)
    >>> result = ndimage.fourier_shift(input_, shift=200)
    >>> result = numpy.fft.ifft2(result)
    >>> ax1.imshow(ascent)
    >>> ax2.imshow(result.real)  # the imaginary part is an artifact
    >>> plt.show()
    r   )r   r"   r   r   r#   r   r$   r   r%   r&   r'   r   r
   )r   shiftr*   r+   r   shiftss         r   r
   r
      s    Z JJuE(7Fejj1D,,UEJJ?FZZbjj1F<<""E61dF;Mr   )r8   N)numpyr   scipy._lib._utilr    r   r   __all__r   r   r   r   r	   r
    r   r   <module>r>      s<   >  1   7t6r@F5r   