
    tKg</                     t    d Z ddlZddlmZmZmZmZ ddlm	Z	 g dZ
 G d de      Zd	ej                  d
fdZy)zD
Convenience interface to N-D interpolation

.. versionadded:: 0.9

    N   )LinearNDInterpolatorNDInterpolatorBaseCloughTocher2DInterpolator_ndim_coords_from_arrays)cKDTree)griddataNearestNDInterpolatorr   r   c                       e Zd ZdZddZd Zy)r
   aL  NearestNDInterpolator(x, y).

    Nearest-neighbor interpolator in N > 1 dimensions.

    .. versionadded:: 0.9

    Methods
    -------
    __call__

    Parameters
    ----------
    x : (npoints, ndims) 2-D ndarray of floats
        Data point coordinates.
    y : (npoints, ) 1-D ndarray of float or complex
        Data values.
    rescale : boolean, optional
        Rescale points to unit cube before performing interpolation.
        This is useful if some of the input dimensions have
        incommensurable units and differ by many orders of magnitude.

        .. versionadded:: 0.14.0
    tree_options : dict, optional
        Options passed to the underlying ``cKDTree``.

        .. versionadded:: 0.17.0

    See Also
    --------
    griddata :
        Interpolate unstructured D-D data.
    LinearNDInterpolator :
        Piecewise linear interpolator in N dimensions.
    CloughTocher2DInterpolator :
        Piecewise cubic, C1 smooth, curvature-minimizing interpolator in 2D.
    interpn : Interpolation on a regular grid or rectilinear grid.
    RegularGridInterpolator : Interpolator on a regular or rectilinear grid
                              in arbitrary dimensions (`interpn` wraps this
                              class).

    Notes
    -----
    Uses ``scipy.spatial.cKDTree``

    .. note:: For data on a regular grid use `interpn` instead.

    Examples
    --------
    We can interpolate values on a 2D plane:

    >>> from scipy.interpolate import NearestNDInterpolator
    >>> import numpy as np
    >>> import matplotlib.pyplot as plt
    >>> rng = np.random.default_rng()
    >>> x = rng.random(10) - 0.5
    >>> y = rng.random(10) - 0.5
    >>> z = np.hypot(x, y)
    >>> X = np.linspace(min(x), max(x))
    >>> Y = np.linspace(min(y), max(y))
    >>> X, Y = np.meshgrid(X, Y)  # 2D grid for interpolation
    >>> interp = NearestNDInterpolator(list(zip(x, y)), z)
    >>> Z = interp(X, Y)
    >>> plt.pcolormesh(X, Y, Z, shading='auto')
    >>> plt.plot(x, y, "ok", label="input point")
    >>> plt.legend()
    >>> plt.colorbar()
    >>> plt.axis("equal")
    >>> plt.show()

    Nc                     t        j                  | |||dd       |
t               }t        | j                  fi || _        t        j                  |      | _        y )NF)rescaleneed_contiguousneed_values)	r   __init__dictr   pointstreenpasarrayvalues)selfxyr   tree_optionss        a/home/alanp/www/video.onchill/myenv/lib/python3.12/site-packages/scipy/interpolate/_ndgriddata.pyr   zNearestNDInterpolator.__init__\   sQ    ##D!Q4905	7 6LDKK8<8	jjm    c                    t        || j                  j                  d         }| j                  |      }| j	                  |      }|j                  d|j                  d         }|j                  }|j                  } | j                  j                  |fi |\  }}t        j                  |      }	| j                  j                  dkD  r |dd | j                  j                  dd z   }
n|dd }
t        j                  | j                  j                  t        j                        r;t        j                  |
t        j                   | j                  j                        }n$t        j                  |
t        j                         }| j                  ||	   df   ||	<   | j                  j                  dkD  r |dd | j                  j                  dd z   }n|dd }|j                  |      }|S )a  
        Evaluate interpolator at given points.

        Parameters
        ----------
        x1, x2, ... xn : array-like of float
            Points where to interpolate data at.
            x1, x2, ... xn can be array-like of float with broadcastable shape.
            or x1 can be array-like of float with shape ``(..., ndim)``
        **query_options
            This allows ``eps``, ``p``, ``distance_upper_bound``, and ``workers``
            being passed to the cKDTree's query function to be explicitly set.
            See `scipy.spatial.cKDTree.query` for an overview of the different options.

            .. versionadded:: 1.12.0

        r   )ndimN)dtype.)r   r   shape_check_call_shape_scale_xreshaper   queryr   isfiniter   r   
issubdtyper    complexfloatingfullnan)r   argsquery_optionsxixi_flatoriginal_shapeflattened_shapedisti
valid_maskinterp_shapeinterp_values	new_shapes                r   __call__zNearestNDInterpolator.__call__e   s   * &d1B1B11EF##B']]2 **R".!-- "$))//';];a[[&
 ;;a*3B/$++2C2CAB2GGL*3B/L==**B,>,>?GGL"&&@Q@QRMGGL"&&9M$(KK*s0B$Cj!;;a&s+dkk.?.?.CCI&s+I%--i8r   )FN)__name__
__module____qualname____doc__r   r7    r   r   r
   r
      s    EN$Ar   r
   linearFc                 N   t        |       } | j                  dk  r| j                  }n| j                  d   }|dk(  r|dv rddlm} | j                         } t        |t              rt        |      dk7  rt        d      |\  }t        j                  |       }| |   } ||   }|dk(  rd} || ||d	d
|      }	 |	|      S |dk(  rt        | ||      }	 |	|      S |dk(  rt        | |||      }	 |	|      S |dk(  r|dk(  rt        | |||      }	 |	|      S t        d||fz        )aX  
    Interpolate unstructured D-D data.

    Parameters
    ----------
    points : 2-D ndarray of floats with shape (n, D), or length D tuple of 1-D ndarrays with shape (n,).
        Data point coordinates.
    values : ndarray of float or complex, shape (n,)
        Data values.
    xi : 2-D ndarray of floats with shape (m, D), or length D tuple of ndarrays broadcastable to the same shape.
        Points at which to interpolate data.
    method : {'linear', 'nearest', 'cubic'}, optional
        Method of interpolation. One of

        ``nearest``
          return the value at the data point closest to
          the point of interpolation. See `NearestNDInterpolator` for
          more details.

        ``linear``
          tessellate the input point set to N-D
          simplices, and interpolate linearly on each simplex. See
          `LinearNDInterpolator` for more details.

        ``cubic`` (1-D)
          return the value determined from a cubic
          spline.

        ``cubic`` (2-D)
          return the value determined from a
          piecewise cubic, continuously differentiable (C1), and
          approximately curvature-minimizing polynomial surface. See
          `CloughTocher2DInterpolator` for more details.
    fill_value : float, optional
        Value used to fill in for requested points outside of the
        convex hull of the input points. If not provided, then the
        default is ``nan``. This option has no effect for the
        'nearest' method.
    rescale : bool, optional
        Rescale points to unit cube before performing interpolation.
        This is useful if some of the input dimensions have
        incommensurable units and differ by many orders of magnitude.

        .. versionadded:: 0.14.0

    Returns
    -------
    ndarray
        Array of interpolated values.

    See Also
    --------
    LinearNDInterpolator :
        Piecewise linear interpolator in N dimensions.
    NearestNDInterpolator :
        Nearest-neighbor interpolator in N dimensions.
    CloughTocher2DInterpolator :
        Piecewise cubic, C1 smooth, curvature-minimizing interpolator in 2D.
    interpn : Interpolation on a regular grid or rectilinear grid.
    RegularGridInterpolator : Interpolator on a regular or rectilinear grid
                              in arbitrary dimensions (`interpn` wraps this
                              class).

    Notes
    -----

    .. versionadded:: 0.9

    .. note:: For data on a regular grid use `interpn` instead.

    Examples
    --------

    Suppose we want to interpolate the 2-D function

    >>> import numpy as np
    >>> def func(x, y):
    ...     return x*(1-x)*np.cos(4*np.pi*x) * np.sin(4*np.pi*y**2)**2

    on a grid in [0, 1]x[0, 1]

    >>> grid_x, grid_y = np.mgrid[0:1:100j, 0:1:200j]

    but we only know its values at 1000 data points:

    >>> rng = np.random.default_rng()
    >>> points = rng.random((1000, 2))
    >>> values = func(points[:,0], points[:,1])

    This can be done with `griddata` -- below we try out all of the
    interpolation methods:

    >>> from scipy.interpolate import griddata
    >>> grid_z0 = griddata(points, values, (grid_x, grid_y), method='nearest')
    >>> grid_z1 = griddata(points, values, (grid_x, grid_y), method='linear')
    >>> grid_z2 = griddata(points, values, (grid_x, grid_y), method='cubic')

    One can see that the exact result is reproduced by all of the
    methods to some degree, but for this smooth function the piecewise
    cubic interpolant gives the best results:

    >>> import matplotlib.pyplot as plt
    >>> plt.subplot(221)
    >>> plt.imshow(func(grid_x, grid_y).T, extent=(0,1,0,1), origin='lower')
    >>> plt.plot(points[:,0], points[:,1], 'k.', ms=1)
    >>> plt.title('Original')
    >>> plt.subplot(222)
    >>> plt.imshow(grid_z0.T, extent=(0,1,0,1), origin='lower')
    >>> plt.title('Nearest')
    >>> plt.subplot(223)
    >>> plt.imshow(grid_z1.T, extent=(0,1,0,1), origin='lower')
    >>> plt.title('Linear')
    >>> plt.subplot(224)
    >>> plt.imshow(grid_z2.T, extent=(0,1,0,1), origin='lower')
    >>> plt.title('Cubic')
    >>> plt.gcf().set_size_inches(6, 6)
    >>> plt.show()

       r   r   )nearestr=   cubic)interp1dz"invalid number of dimensions in xir@   extrapolater   F)kindaxisbounds_error
fill_value)r   r=   )rG   r   rA   z7Unknown interpolation method %r for %d dimensional data)r   r   r!   _interpolaterB   ravel
isinstancetuplelen
ValueErrorr   argsortr
   r   r   )
r   r   r-   methodrG   r   r   rB   idxips
             r   r	   r	      sQ   t &f-F{{Q{{||BqyV==*b% 2w!| !EFFCBjj Y&Jff6!+-"v	9	"667C"v	8	!&&Z*13"v	7	tqy':079"v /28$@ A 	Ar   )r;   numpyr   interpndr   r   r   r   scipy.spatialr   __all__r
   r*   r	   r<   r   r   <module>rV      sH    : : !)R. Rt )1RVV^Ar   